全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201603153

Full-Text   Cite this paper   Add to My Lib

Abstract:

以芘(Py)为荧光探针,十六烷基氯化吡啶(CPC)为猝灭剂,采用稳态荧光探针法测定了反相破乳剂SP169和DMEA169的临界胶束浓度(cmc)及胶束聚集数(Nagg),并考察了两者在溶液中形成的胶束内部的微环境极性大小,采用动态光散射法测定了两者胶束的流体力学直径(Dh),并通过耗散粒子动力学(DPD)方法模拟了两者在溶液中聚集形态的动力学变化过程。结果表明,两者的临界胶束聚集数分别为Nm(SP169)=28,Nm(DMEA169)=18;SP169的流体力学直径小于DMEA169,但其增长速度前者大于后者;DPD模拟的结果显示,由于起始剂在胶束内部与其他粒子间相互作用的不同,SP169聚集成棒状胶束,而DMEA169聚集成舒展的球状胶束,这解释了实验结果:相同浓度下前者胶束的流体力学直径及胶束内部的微环境极性皆比后者小,同时由于SP169起始剂的疏水性,使得其具有较大的胶束聚集数。
The critical micelle concentrations(CMCs)of the reversed demulsifiers poly(propylene oxide)-blockpoly(ethylene oxide)-block-poly(propylene oxide)(PPO-PEO-PPO),SP169,and DMEA169 were measuredby steady-state fluorescence spectroscopy,with cetylpyridinium chloride(CPC)as the quencher and pyreneas the fluorescent probe.The micellar aggregation numbers(Nagg)and the polarity of the micro-environmentsinside the micelles were obtained for the first time.The hydrodynamic diameters of the micelles at differentdemulsifier concentrations were determined by dynamic light scattering(DLS)and the corresponding micelleshapes were simulated by dissipative particle dynamics(DPD).The results indicate that the critical micellaraggregation numbers(Nm)can be extrapolated from the Nagg-cs curves,with Nm(SP169)=28 and Nm(DMEA169)=18.Thehydrodynamic diameter of SP169 is smaller than that of DMEA169,while the acceleration of the former is fasterthan that of the latter.The simulations show that the micelle of SP169 is spherical while that of DMEA169 hasaclavate shape,because of the different interactions resulting from the initiators among the beads.Moreover,the simulations are in good agreement with the experiments in that they find a smaller hydrodynamic diameterand a less polar micro-environment inside the micelle of SP169 compared with that of DMEA169,while theaggregation number of the former is larger than that of the latter

References

[1]  李智新; 陈文海. 油田化学, 1992, 1, 31.
[2]  4 Chabba S. ; Kumar S. ; Aswal V. K. Kang T ; Kang T. S. ; Mahajan R. K. Colloid Surface A 2015, 472, 9. doi: 10.1016/j.colsurfa.2015.02.032
[3]  27 Accelrys. Materials Studio, Revision 7.0; Accelrys Inc.: San Diego, CA, 2013.
[4]  28 Kalyanasundaram K. ; Thomas J. K. J. Am. Chem. Soc. 1977, 99, 2039. doi: 10.1021/ja00449a004
[5]  1 Zhang J. S. ; Wang Z. Y. ; Dong H Oil-Gasfield Surface Eng 1993, 12, 40.
[6]  张金素; 王智勇;董化. 油田地面工程, 1993, 12, 40.
[7]  王宜阳; 张路; 孙涛垒; 方洪波; 赵濉; 俞稼镛. 物理化学学报, 2003, 19, 297. doi: 10.3866/PKU.WHXB20030403
[8]  8 Samanta S. ; Ghosh P Chem. Eng. Res. Des 2011, 8, 2344. doi: 10.1016/j.cherd.2011.04.006
[9]  9 Turro N. J. ; Yekta A. J Am. Chem. Soc 1978, 100, 5951. doi: 10.1021/ja00486a062
[10]  10 Aguiar J. ; Carpena P. ; Molina-Bolívar J. A. ; Ruiz C. C. J. Colloid Interface Sci. 2003, 258, 116. doi: 10.1016/S0021-9797(02)00082-6
[11]  13 Pineiro L. ; Novo M. ; Al-Soufi W. Adv. Colloid Interface Sci. 2015, 251, 1. doi: 10.1016/j.cis.2014.10.010
[12]  15 Wu S. Y. ; Tachiya M. ; Yan Z. N Spectrochim. Acta A 2015, 138, 807. doi: 10.1016/j.saa.2014.11.008
[13]  21 Welcome toWikipedia. http://en.wikipedia.org/wiki/Pyrene (accessed September 3, 2015).
[14]  23 Han L. J. ; Ye Z. B. ; Chen H. ; Luo P. Y Acta Phys. -Chim. Sin. 2012, 28, 1405. doi: 10.3866/PKU.WHXB201203202
[15]  韩丽娟; 叶仲斌; 陈洪;罗平亚. 物理化学学报, 2012, 28, 1405. doi: 10.3866/PKU.WHXB201203202
[16]  24 Groot R. D. ; Warren P. B. J Chem. Phys 1997, 107, 4423. doi: 10.1063/1.474784
[17]  2 Wang Y. Y. ; Zhang L. ; Sun T. L. ; Fang H. B. ; Zhao S. ; Yu J. Y. Acta Phys. -Chim. Sin 2003, 19, 297. doi: 10.3866/PKU.WHXB20030403
[18]  5 Pal A. ; Deenadayalu N. ; Chaudhary S Fluid Phase Equilibr 2015, 391, 67. doi: 10.1016/j.fluid.2015.02.00
[19]  6 Virtanen J. ; Holappa S. ; Lemmetyinen H. Tenhu, H. Macromolecules 2002, 35, 4763. doi: 10.1021/ma012239l
[20]  7 Zhong X. ; Guo J.W. ; Feng L. J. ; Xu X. J. ; Zhu D. Y Colloid Surface A 2014, 441, 572. doi: 10.1016/j.colsurfa.2013.10.016
[21]  11 Das D. ; Ismail K. J Colloid Interface Sci 2008, 327, 198. doi: 10.1016/j.jcis.2008.07.045
[22]  12 Ghosh S. K. ; Khatua P. K. ; Bhattacharya S. C. Int. J.. Mol. Sci. 2003, 4, 562. doi: 10.3390/i4110562
[23]  崔璐; 樊启宁;于道永. 分析实验室, 2014, 33, 691.
[24]  26 Groot R. D. ; Rabone K. L. Biophys. J. 2001, 81, 725. doi: 10.1016/S0006-3495(01)75737-2
[25]  29 Xu J. G. ; Wang Z. B Fluorescence Analysis, 3rd ed. Beijing: Science Press, 2006, 64- 85.
[26]  许金钩;王尊本. 荧光分析法.第三版, 北京: 科学出版社, 2006, 64- 85.
[27]  30 Li X. B. ; Xu L. ; Meng X.W. ; Han Z. H. ; Luo T. L. ; Liu G. J. Acta Phys. -Chim. Sin 2005, 21, 1403. doi: 10.3866/PKU.WHXB20051215
[28]  李新宝; 徐丽; 孟校威; 韩智慧; 雒廷亮; 刘国际. 物理化学学报, 2005, 21, 1403. doi: 10.3866/PKU.WHXB20051215
[29]  3 Li Z. X. ; Chen W. H Oilfield Chem 1992, 1, 31.
[30]  14 Vinayika S. ; Rashmi T. J Disper. Sci. Technol 2014, 35, 1774. doi: 10.1080/01932691.2013.856317
[31]  16 Cao X. R. ; Xu G. Y. ; Li Y. M. ; Zhang Z. Q. J Phys. Chem. A 2005, 109, 10418. doi: 10.1021/jp053636r
[32]  17 Chen S. ; Hu G. H. ; Guo C. ; Liu H. Z Chem. Eng. Sci. 2007, 62, 5251. doi: 10.1016/j.ces.2007.01.072
[33]  18 Liu L. L. ; Yang Z. Z. Chem. J.Chin. Univ 2015, 36, 2179. doi: 10.7503/cjcu20150552
[34]  刘林林;杨忠志. 高等学校化学学报, 2015, 36, 2179. doi: 10.7503/cjcu20150552
[35]  19 Yuan S. L. ; Zhang X. Q. ; Chan K. Y Langmuir 2008, 25, 2034. doi: 10.1021/la8035133
[36]  20 Guo S. L. ; Hou T. J. ; Xu X. J. J. Phys. Chem. B 2002, 106, 11397. doi: 10.1021/jp026314l
[37]  22 Cui L. ; Fan Q. N. ; Yu D. Y. Chin. J. Anal. Lab 2014, 33, 691.
[38]  25 Hansen C. M Hansen Solubility Parameters: a User's Handbook 2nd ed. CRC Press: Boca Raton, FL, 2007, 347- 483.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133