采用恒电位方法,选择氯化钾和乙二胺(EDA)为添加剂,在氧化铟锡(ITO)导电玻璃上制备了高度有序的ZnO纳米片阵列,通过二次电沉积得到了ZnO纳米片上生长纳米棒的微纳分级结构.利用化学浴沉积法在ZnO基底上沉积Sb2S3纳米粒子制备出了Sb2S3/ZnO纳米片壳核结构和Sb2S3/ZnO微纳分级壳核结构.利用扫描电子显微镜(SEM)、X射线衍射(XRD)、紫外-可见(UV-Vis)吸收光谱、瞬态光电流等对其形貌、结构组成和光电化学性能进行了表征和分析.结果表明, Sb2S3/ZnO纳米片上生长纳米棒分级壳核结构的光电流明显高于Sb2S3/ZnO纳米片壳核结构.在Sb2S3/ZnO纳米片壳核结构和Sb2S3/ZnO微纳分级壳核结构的基础上旋涂一层P3HT薄膜形成P3HT/Sb2S3/ZnO复合结构,以上述复合结构薄膜为光活性层组装成杂化太阳电池,其中, P3HT/Sb2S3/ZnO分级壳核结构杂化太阳电池的能量转换效率最高,达到了0.81%. We fabricated highly ordered ZnO nanosheet arrays on ITO substrates by adding KCl and ethylenediamine(EDA) through potentiostatic deposition, then produced a hierarchical structure of ZnO nanorods on the nanosheets by using secondary electrodeposition. Shell-core Sb2S3/ZnO nanostructures were prepared from ZnO nanosheets and ZnO nanorods on nanosheets by chemical bath deposition. The nanostructures were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and their photoelectrochemical properties were investigated using ultraviolet-visible spectroscopy (UV-Vis) and photocurrent measurements. The shell-core Sb2S3/ZnO based on the hierarchical micronanostructure had higher photocurrent than did the shell-core Sb2S3/ZnO nanosheets. A hybrid solar cell was fabricated with a P3HT/Sb2S3/ZnO film as the photoactive layer. The P3HT/Sb2S3/ZnO hierarchical electrode exhibited an energy conversion efficiency as high as 0.81%
References
[1]
3 Xu L. F. ; Chen Q. W. ; Xu D. S. J. Phys. Chem. C 2007, 111, 11560. doi: 10.1021/jp071536a
[2]
4 Shi Y. T. ; Zhu C. ; Wang L. ; Zhao C. Y. ; Li W. ; Fung K. K. ; Ma T. L. ; Hagfeldt A. ; Wang N. Chem. Mater 2013, 25, 1000. doi: 10.1021/cm400220q
[3]
5 Hao Y. Z. ; Cui Y. Journal of Functional Materials 2008, 1 (39), 83.
14 Jonas W. ; Florian A. ; Thomas B. ; Lukas S. M. J. Phys. Chem. C 2011, 115, 15081. doi: 10.1021/jp203600z
[9]
17 Heo J. H. ; Im S. H. ; Kim H. J. ; Boix P. P. ; Lee S. J. ; Seok S. I. ; Mora-Seró I. ; Bisquert J. J. Phys. Chem. C 2012, 116, 20717. doi: 10.1021/jp305150s
[10]
18 Moon S. J. ; Itzhaik Y. ; Yum J. H. ; Shaik M. ; Zakeeruddin G. H. ; Graetzel M. J. Phys. Chem. Lett 2010, 1, 1524. doi: 10.1021/jz100308q
[11]
19 Chang J. A. ; Im S. H. ; Lee Y. H. ; Kim H. J. ; Lim C. S. ; Lim J. H. ; Seok S. I. Nano Lett 2012, 12, 1863. doi: 10.1021/nl204224v
[12]
22 Messina S. ; Nair M. T. S. ; Nair P. K. Thin Solid Films 2009, 517, 2503.
[13]
23 Im S. H. ; Lim C. S. ; Chang J. A. ; Lee Y. H. ; Maiti N. ; Kim H. J. ; Nazeeruddin M. K. ; Graetzel M. ; Seok S. I. Nano Lett 2011, 11, 4789. doi: 10.1021/nl2026184
7 Zhang H. ; Wu P. ; Han C. B. ; Sheng W. ; Cui Q. ; Qiu Z. L. ; Liu C. W. ; Gao F. ; Wang M. T. Chemical Journal of Chinese University 2013, 34 (10), 2401.
[18]
8 Asogwa P. ; Ezugwu U. S. S. ; Ezema F. I. Chalcogenide Letters 2009, 6 (7), 287.
[19]
9 Aousgi F. M., Kanzari. Journal of Optoelectronics and Advanced Materials 2010 2010, 12 (2), 227.
[20]
11 Im S. H. ; Kim H. J. ; Rhee J. H. ; Lim C. S. ; Seok S. I. Energy & Environmental Science 2011, 4, 2799. doi: 10.1039/c0ee00741b
[21]
12 Zhu G. Q. ; Huang X. J. ; Feng B. ; Ge B. ; Bian X. B. Chinese Journal of Inorganic Chemistry 2010, 26 (11), 2041.
[22]
13 Rajpure K. Y. ; Bhosale C. H. Materials Chemistry and Physics 2000 2000, 63 (3), 263. doi: 10.1016/S0254-0584(99)00233-3
[23]
15 Juliano C. C. ; Craig A. ; Feng X. J. ; Zhang X. Y. ; Sridhar K. ; Maria V. B. Z. ; Bao N. Z. Chem. Commun 2012, 48, 2818. doi: 10.1039/c2cc17573h
[24]
16 Chang J. A. ; Rhee J. H. ; Im S. H. ; Lee Y. H. ; Kim H. J. ; Seok S. I. ; Nazeeruddin M. K. ; Graetzel M. Nano Lett 2010, 10, 2609. doi: 10.1021/nl101322h
[25]
20 Flannan T. F. ; O'Mahony. Thierry L. ; Nestor G. ; Roberto G. ; Saif A. H. Energy & Environmental Science 2012, 10, 1039.
[26]
21 Itzhaik Y. ; Niitsoo O. ; Page M. ; Hodes G. J. Phys. Chem. C 2009, 113, 4254. doi: 10.1021/jp900302b
[27]
24 Salunkhe D. B. ; Gargote S. S. ; Dubal D. P. ; Kim W. B. ; Sankapal B. R. Chemical Physical Letters 2012, 554, 150. doi: 10.1016/j.cplett.2012.10.032
[28]
25 Wei, Y. Fabrication of Nano-Composited-Material and Study of Photronic Property. M. S. Dissertation, Hebei University of Science and Technology, Shijiazhuang, 2009.
[29]
魏垚.纳米复合材料的制备及其光电性能的研究[D].石家庄:河北科技大学, 2009.
[30]
26 Hao Y. Z. ; Sun B. ; Luo C. ; Fan L. X. ; Pei J. ; Li Y. P. Chemical Journal of Chinese University 2014, 35 (1), 127.
[31]
27 Li, Y. B. Research on the Construction and Properties of Photoeletic ZnO/CuInS2 and ZnO/CuInS2/CuSCN Heterostructures. M. S. Dissertation, Tianjin Institute of Urban Construction, Tianjin, 2012.
[32]
28 Hao, Y. Z. Photoelectrochemical Studies on Charge Transport Properties of Nanostructured Semiconductor Electrode and Its Photosensitization with Sensitizers. Ph. D. Dissertation, Peking University, Beijing, 1999.
[33]
郝彦忠.半导体纳米结构电极及敏化层电荷传输特性的光电化学研究[D].北京:北京大学, 1999.
[34]
29 Hao Y. Z. ; Fan L. X. ; Sun B. ; Sun S. ; Pei J. Acta Chim. Sin 2014, 72, 114. doi: 10.6023/A13080901
[35]
1 Ueno N. ; Yamamoto A. ; Uchida Y. ; Egashira Y. ; Nishiyama N. Materials Letters 2012, 86, 65. doi: 10.1016/j.matlet.2012.07.033
[36]
2 Jiao S. H. ; Xu D. S. ; Xu L. F. ; Zhang X. G. Acta Phys. -Chim. Sin 2012, 28 (10), 2436. doi: 10.3866/PKU.WHXB201209145