以煤基碳泡沫(CCF)作为骨架材料来封装改性固-固相变材料聚氨酯(PU),并实现其功能化应用。使用场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射仪(PXRD)、傅里叶变换红外(FT-IR)光谱仪、热重分析仪(TGA)、差示扫描量热(DSC)分析仪、热导测试仪对所得到的复合材料(PU@CCF)进行结构和特性表征。结果显示,聚乙二醇(PEG-6000)与异氰酸酯(HDI)反应制备聚氨酯的最优摩尔比例为1:2,煤基碳泡沫可以很好地阻止聚氨酯从复合材料中泄露出来。相较于聚乙二醇,复合材料的导热率上升了54%,经过200次热循环,复合材料保持了良好的稳定性,而且其相变主体材料PU的过冷度降低了10℃以上。基于碳泡沫骨架良好的导电性,加载高于0.8 V的低电压就可实现聚氨酯电热相变储能,在1.1 V电压驱动下,其电热转换效率可达75%。该工作是目前报道的最低电压下可实现电热相变转换的复合功能材料,为实现低成本相变复合材料的制备与功能化提供重要参考。 In this article, we used coal-derived carbon foam (CCF) as a skeleton material to encapsulate the solid-to-solid phase change material polyurethane (PU) to provide PU@CCF composites for functional applications. The obtained PU@CCF composites were characterized by field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermal conductivity measurements. The results illustrated that the most preferred ratio of polyethylene glycol (PEG-6000) to hexamethylene diisocyanate (HDI) to synthesize PU was 1:2 and the CCF skeleton prevented PU leakage during the phase change process. Compared with PEG-6000, the thermal conductivity of the PU@CCF composite was raised by 54%, its cycle thermal stability was remarkable after 2000 cycles, and its supercooling degree was lowered by more than 10℃. For electro-to-heat energy conversion, the phase transition behavior of the obtained PU@CCF could be induced under an electron voltage as low as 0.8 V with 75% conversion efficiency at 1.1 V. This functional phase change composite realizes electric-heat conversion under the lowest loading voltage reported to date, providing an important benchmark for the preparation and functionalization of low-cost phase change composites
References
[1]
张正国; 黄弋峰; 方晓明; 邵刚. 化学工程, 2005, 33 (4), 34.
[2]
8 Benson D. K. ; Burrows R.W. ; Webb J. D. Sol. Energy Mater 1986, 13, 133. doi: 10.1016/0165-1633(86)90040-7
[3]
10 Machado A. V. ; Covas J. A. ; Duin M. V. Polymer 2001, 42, 3649. doi: 10.1016/S0032-3861(00)00692-3
[4]
11 Mehrabzadeh M. ; Rezaie D. J.Appl. Polym. Sci 2002, 84, 2573. doi: 10.1002/app.10203
[5]
13 Harlan S. L. ACS Symp. Ser 1991, 457, 248. doi: 10.1021/bk-1991-0457.ch015
[6]
14 Parrish B. ; Breitenkamp R. B. ; Emrick T. J.Am. Chem. Soc 2005, 127, 7404. doi: 10.1021/ja050310n
[7]
17 Lu X. P. ; Nilsson O. ; Fricke J. ; Pekala R.W. J.Appl. Phys 1993, 73 (2), 581. doi: 10.1063/1.353367
[8]
18 Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K.M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442, 282. doi: 10.1038/nature04969
[9]
19 Liu Z. F. Acta Phys. -Chim. Sin 2016, 32 (7), 1553. doi: 10.3866/PKU.WHXB201606241
29 Li K. ; Wu Q. ; Ye P.W. ; Wang X. Q. ; Li L. ; Luan Z. Q. Carbon Techniques 2013, 32, 6.
[19]
32 Bilgin S. S. ; Derya K. ; Cemil A. ; Isa G. Carbohydr. Polym 2011, 84, 141. doi: 10.1016/j.carbpol.2010.11.015
[20]
2 Thavasi V. ; Singh G. ; Ramakrishna S. Energy Environ. Sci 2008, 1, 205. doi: 10.1039/B809074M
[21]
3 Ye H. ; Ge X. S. Sol. Energy Mater. Sol. Cells 2000, 64 (1), 37. doi: 10.1016/s09270248(00)00041-6
[22]
胡小芳; 林丽莹; 胡大为. 天津理工大学学报, 2008, 24 (3), 63.
[23]
15 Sekiguchi A. ; Lee V. Y. ; Nanjo M. Coordin. Chem. Rev 2000, 210, 11. doi: 10.1016/S0010-8545(00)00315-5
[24]
23 Chen Z. P. ; Ren W. C. ; Gao L. B. ; Liu B. L. ; Pei S. F. ; Cheng H. M. Nat. Mater 2011, 10, 424. doi: 10.1038/nmat3001
[25]
24 Klett J.W. ; McMillan A. D. ; Gallego N. C. ; Walls C. A. J. Mater. Sci 2004, 39, 3659. doi: 10.1023/B:JMSC.0000030719.80262.f8
[26]
25 Chen X. N. ; Lu Y. G. ; Zhang X. ; Zhao F. J. Mater. Des 2012, 40, 497. doi: 10.1016/j.matdes.2012.04.026
[27]
26 Chen C. ; Kennel E. B. ; Stiller A. H. ; Stansberry P. G. ; Zondlo J.W. Carbon 2006, 44, 1535. doi: 10.1016/j.carbon.2005.12.021
[28]
27 Calvo M. ; García R. ; Arenillas A. ; Suárez I. ; Moinelo S. R. Fuel 2005, 84, 2184. doi: 10.1016/j.fuel.2005.06.008
[29]
1 Hyun D. C. ; Levinson N. S. ; Jeong U. ; Xia Y. N. Angew. Chem. Int. Ed 2014, 53, 3780. doi: 10.1002/anie.201305201
[30]
4 San A. ; Karaipekli A. Appl. Therm. Eng 2007, 27 (8), 1271. doi: 10.1016/j.applthermaleng.2006.11.004
[31]
5 Zhang Z. G. ; Huang G. F. ; Fang X. M. ; Shao G. Chem. Engineering 2005, 33 (4), 34.
[32]
6 Hu X. F. ; Lin L. Y. ; Hu D.W. J.Tianjin Univ. Technol 2008, 24 (3), 63.
[33]
李凯; 吴琼; 叶平伟; 王喜芹; 栗丽; 栾志强. 炭素技术, 2013, 32, 6.
[34]
30 Joulin A. ; Younsi Z. ; Zalewski L. ; Lassue S. ; Rousse D. R. ; Cavrot J. P. Appl. Energy 2011, 88, 2454. doi: 10.1016/j.apenergy.2011.01.036
[35]
31 Hou L. J. ; Ding Y. T. ; Zhang Z. L. ; Sun Z. S. ; Shan Z. H. Colloids Surf. A 2015, 467, 46. doi: 10.1016/j.colsurfa.2014.11.014
[36]
33 Chen R. J. ; Yao R. M. ; Xia W. ; Zou R. Q. Appl. Energy 2015, 152, 183. doi: 10.1016/j.apenergy.2015.01.022
[37]
7 Zhang, M. Synthesis and Properties Study on PolyethyleneGlycol/Poly (Vinyl Alcohol) Polymeric Solid-Solid PhaseChange Materials. Ph. D. Dissertation, Jilin University, Changchun, 2004.
[38]
张梅.聚乙二醇/聚乙烯醇高分子固-固相变材料的合成与性能研究[D].长春:吉林大学, 2004.
[39]
9 Chandra D. ; Helms J. H. ; Majumdar A. J.Electrochem. Soc 1994, 141 (7), 1921. doi: 10.1149/1.2055027
[40]
12 Liang X. H. ; Guo Y. Q. ; Gu L. Z. ; Ding E. Y. Macromolecules 1995, 28, 6551. doi: 10.1021/ma00123a023
[41]
16 Jannasch P. ; Wesslén B. J.Appl. Polym. Sci 1995, 58 (4), 753. doi: 10.1002/app.1995.070580408