报道了一种直接碳固体氧化物燃料电池(DC-SOFC)电池组。该电池组由3个单节管式电池串接而成。为使电池组能够承载更多的碳,阳极制备在管状电池的外壁。此三节电池组直接以碳为燃料,空气中的氧气为氧化剂运行。该电池组的有效面积为10.2 cm2,以17 g负载5%(w)Fe的活性炭为燃料,800℃下的功率为4.1 W。电池组以1 A的恒电流放电19 h,放电容量为19 A·h,释放出31.6 W·h的电能。这种高容量的DC-SOFC可开发成便携式电源加以应用。 A direct carbon solid oxide fuel cell (DC-SOFC) stack was prepared with 3 tubular cells electrically connected in series. To increase carbon storage in the stack, the anode was fabricated outside the tubular cells so that carbon fuel can be loaded at the exterior of the stack, which is more spacious than the interior. The 3-cell-stack is operated directly with carbon as the fuel and oxygen in ambient air as the oxidant. With a total effective area of 10.2 cm2 and a 5% (w) Fe-loaded activated carbon fuel of 17 g, the stack reveals a peak power of 4.1 W at 800℃. The stack discharged at a constant current of 1.0 A for 19 h, giving a charge capacity of 19 A·h and an energy capacity of 31.6 W·h, which are much higher than those of a similar stack with anode on the inside and carbon loaded at the interior. The high capacity of our DC-SOFC opens up potential applications in portable devices
References
[1]
5 Liu, J. ; Liu, Y. ; Tang, Y. B. ; Bai, Y. H. A Direct Carbon Solid OxideFuel Cell Power System. CN Patent: ZL201110008698. 8, 2013.
[2]
17 Gür T. M. Chem. Rev. 2013, 113, 6179. doi: 10.1021/cr400072b
[3]
18 Tang Y. B. ; Liu J. ; Sui J. ECS Trans. 2009, 25, 1109. doi: 10.1149/1.3205638
[4]
19 Tang Y. B. ; Liu J. Acta Phys. -Chim. Sin. 2010, 26 (5), 1191. doi: 10.3866/PKU.WHXB20100502
20 Liu R. Z. ; Zhao C. H. ; Li J. L. ; Zeng F. R. ; Wang S. R. J. Power Sources 2010, 195, 480. doi: 10.1016/j.jpowsour.2009.07.032
[7]
21 Zhang L. ; Xiao J. ; Xie Y. M. ; Tang Y. B. ; Liu J. ; Liu M. L. J. Alloy. Compd. 2014, 608, 272. doi: 10.1016/j.jallcom.2014.04.154
[8]
22 Cai W. Z. ; Zhou Q. ; Xie Y. M. ; Liu J. Fuel 2015, 159, 887. doi: 10.1016/j.fuel.2015.07.030
[9]
23 Yu F. Y. ; Zhang Y. P. ; Yu L. ; Cai W. Z. ; Yuan L. L. ; Liu J. ; Liu M. L. Int. J. Hydrog. Energy 2016, 41, 9048. doi: 10.1016/j.ijhydene.2016.04.063
[10]
7 Zhou W. ; Jiao Y. ; Li S. D. ; Shao Z. P. ChemElectroChem 2016, 3 (2), 193. doi: 10.1002/celc.201500420
[11]
8 Lee A. C. ; Mitchell R. E. ; Gür T. M. J. Power Sources 2009, 194, 774. doi: 10.1016/j.jpowsour.2009.05.039
[12]
9 Li C. ; Shi Y. X. ; Cai N. S. J. Power Sources 2010, 195, 4660. doi: 10.1016/j.jpowsour.2010.01.083
[13]
16 Rady A.C. ; Giddey S. ; Badwal S. P. ; Ladewig B. P. ; Bhattacharya S. Energy Fuels 2012, 26, 1471. doi: 10.1021/ef201694y
[14]
28 Zhou Q. ; Cai W. Z. ; Zhang Y. P. ; Liu J. ; Yuan L. L. ; Yu F. Y. ; Wang X. Q. ; Liu M. L. Biomass Bioenergy 2016, 91, 250. doi: 10.1016/j.biombioe.2016.05.036
[15]
32 Liu, J. ; Su, W. H. ; Lü, Z. ; Ji, Y. ; Pei, L. ; Liu, W. ; He, T. M. A RapidSealing Method for Solid Oxide Fuel Cell Using Metal Conductive Adhesive. CN Patent: ZL 02133049. 2. 2004.
[16]
31 Bai Y. H. ; Liu J. ; Gao H. B. J. Alloy. Compd. 2009, 480, 554. doi: 10.1016/j.jallcom.2009.01.089
[17]
24 Xie Y. M. ; Cai W. Z. ; Xiao J. ; Tang Y. B. ; Liu J. ; Liu M. L. J. Power Sources 2015, 277, 1. doi: 10.1016/j.jpowsour.2014.12.016
[18]
25 Rady A. C. ; Giddey S. ; Kulkarni A. ; Badwal S. P. S. ; Bhattacharya S. ; Ladewig B. P. Appl. Energy 2014, 120, 56. doi: 10.1016/j.apenergy.2014.01.046
[19]
26 Dudek M. ; Tomczyk P. ; Socha R. ; Hamaguchi M. Int. J. Hydrog. Energy 2014, 39, 12386. doi: 10.1016/j.ijhydene.2014.04.057
[20]
27 Zhu X. B. ; Li Y. Q. ; Lü Z. Int. J. Hydrog. Energy 2016, 41, 5057. doi: 10.1016/j.ijhydene.2016.01.105
[21]
29 Cai W. Z. ; Zhou Q. ; Xie Y. M. ; Liu J. ; Long G. H. ; Cheng S. ; Liu M. L. Appl. Energy 2016, 179, 1232. doi: 10.1016/j.apenergy.2016.07.068
[22]
30 Xu H. R. ; Chen B. ; Liu J. ; Ni M. Appl. Energy 2016, 178, 353. doi: 10.1016/j.apenergy.2016.06.064
[23]
1 Cao D. ; Sun Y. ; Wang G. J. Power Sources 2007, 167, 250. doi: 10.1016/j.jpowsour.2007.02.034
[24]
2 Nakagawa N. ; Ishida M. Ind. Eng. Chem. Res. 1988, 27, 1181. doi: 10.1021/ie00079a016
[25]
3 Tang Y. B. ; Liu J. Int. J. Hydrog. Energy 2010, 35, 11188. doi: 10.1016/j.ijhydene.2010.07.068
[26]
4 Bai Y. H. ; Liu Y. ; Tang Y. B. ; Xie Y. M. ; Liu J. Int. J. Hydrog. Energy 2011, 36, 9189. doi: 10.1016/j.ijhydene.2011.04.171
[27]
6 Yang B. B. ; Ran R. ; Zhong Y. J. ; Su C. ; Moses O. T% Shao Z. P. Angew. Chem. Int. Edit. 2015, 54, 1. doi: 10.1002/ange.201411039
[28]
10 Xu X. Y. ; Zhou W. ; Liang F. C. ; Zhu Z. H. Appl. Energy 2013, 108, 402. doi: 10.1016/j.apenergy.2013.03.053
[29]
11 Jayakumar A. ; Küngas R.S. R. ; Javadekar A. ; Buttrey D. J. ; Vohs J. M. Energy Environ. Sci. 2011, 4, 4133. doi: 10.1039/C1EE01863A
[30]
12 Xu X. Y. ; Zhou W. ; Zhu Z. H. Ind. Eng. Chem. Res. 2013, 52 (50), 17927. doi: 10.1021/ie403164c
[31]
13 Zecevic S. ; Patton E. M. ; Parhami P. Carbon 2004, 42, 1983. doi: 10.1016/j.carbon.2004.03.036
[32]
14 Cooper J. F. ; Selman R. ECS Trans. 2009, 19, 15. doi: 10.1016/0950-4230(95)00057-7
[33]
15 Xie Y. M. ; Tang Y. B. Liu J. J. Solid State Electr. 2013, 17, 121. doi: 10.1007/s10008-012-1866-5