合成了一个新的配合物[Eu(4-MOBA)3(terpy)(H2O)]2 (4-MOBA:4-甲氧基苯甲酸根, terpy:2, 2':6', 2"-三联吡啶)。采用傅里叶变换红外(FTIR)光谱、元素分析和X射线粉末衍射(XRD)技术对标题配合物进行了表征,用X射线单晶衍射仪测定了配合物的晶体结构,在配合物中每个Eu3+离子与一个三联吡啶分子、一个水分子和三个羧酸分子结合,配位数为9,羧酸基团的配位模式包含三种:双齿螯合,桥连双齿,单齿。根据热重-差示扫描量热/傅里叶变换红外(TG-DSC/FTIR)联用技术,研究了配合物的热分解机理。配合物的发射光谱显示出Eu3+离子的特征荧光发射,表明三联吡啶和4-甲氧基苯甲酸在该体系中可作为敏化集团。另外,文中还讨论了配合物对白色念珠菌和大肠杆菌的抑菌活性。 A new complex [Eu(4-MOBA)3(terpy)(H2O)]2 (4-MOBA: 4-methoxybenzoate, terpy: 2, 2' :6', 2"-terpyridine) was synthesized. The complex was characterized using Fourier transform infrared (FTIR) spectroscopy, elemental analysis, and powder X-ray diffraction (XRD). The structure of the complex was determined using single-crystal XRD. In the complex, each Eu3+ ion is nine coordinated to one terpy molecule, one water molecule and three carboxylate groups. The carboxylate groups are bonded to the Eu3+ ion in three modes: bidentate, bridging bidentate, and monodentate. Based on thermogravimetry-differential scanning calorimetry/Fourier transform infrared (TG-DSC/FTIR) measurements, we determined the thermal decomposition mechanism. The emission spectra of the complex exhibited characteristic luminescence, suggesting that terpy and 4-methoxybenzoic acid can act as sensitizing chromophores in this system. Also, bacteriostatic activities for the complex to Candida albicans and Escherichia coli are discussed
References
[1]
1 Li Q. F. ; Yue D. ; Ge G.W. ; Du X. ; Gong Y. ; Wang Z. ; Hao J. Dalton Trans 2015, 44 (38), 16810. doi: 10.1039/C5DT02555A
[2]
3 Chauvin A. S. ; Comby S. ; Baud M. ; De Piano C. ; Duhot C. ; Bunzli J. C. Inorg. Chem 2009, 48 (22), 10687. doi: 10.1021/ic901424w
[3]
4 Deng, L. Q.; Zhou, Y. X.; Tao, X.;Wang, Y. L.; Hu, Q. S.; Jin, P.; Shen, Y. Z. J. Organomet. Chem. 2014, 749, 356. doi: 10.1016/j.jorganchem.2013.10.031
[4]
5 Akbar R. ; Baral M. ; Kanungo B. K. J. Lumin. 2015, 167, 27. doi: 10.1016/j.jlumin.2015.05.038
[5]
6 Saif M. ; Shebl M. ; Nabeel A. I. ; Shokry R. ; Hafez H. ; Mbarek A. ; Damak K. ; Maalej R. ; Abdel-Mottaleb M. S. A. Sens. Actuators B: Chem. 2015, 220, 162. doi: 10.1016/j.snb.2015.05.040
[6]
9 Jin X. T. ; Shi L. J. ; Li X. P. ; Liu M. Q. ; Lu J. J. ; Sun Z. L. Mater. Lett. 2015, 145, 59- 62. doi: 10.1016/j.matlet.2015.01.068
[7]
12 Heffern M. C. ; Matosziuk L. M. ; Meade T. J. Chem. Rev. 2014, 114 (8), 4496. doi: 10.1021/cr400477t
[8]
17 Wu, J.; Zhang, G.; Liu, J.; Gao, H.; Song, C.; Du, H.; Zhang, L.; Gong, Z.; Lü, Y. J. Rare Earths 2014, 32 (8), 727. doi: 10.1016/S1002-0721(14) 60133-2
[9]
24 Liu Z. ; Yu L. ; Wang Q. ; Tao Y. ; Yang H. J. Lumin 2011, 131 (1), 12. doi: 10.1016/j.jlumin.2010.08.012
[10]
2 Misra S. N. ; Gagnani M. A. ; Devi I. ; Shukla R. S. Bioinorg. Chem. Appl. 2004, 2 (3-4), 155. doi: 10.1155/S1565363304000111
[11]
21 Liu J. ; Ren N. ; Zhang J. ; Zhang C. ; Song H. Sci. China Chem 2014, 57 (11), 1520. doi: 10.1007/s11426-014-5133-8
[12]
22 Zheng J. R. ; Ren N. ; Zhang J. J. ; Zhang D. H. ; Yan L. Z. ; Wu K. Z. Thermochimica Acta 2012, 547, 31. doi: 10.1016/j.tca.2012.08.005
[13]
7 Ain Q. ; Pandey S. K. ; Pandey O. P. ; Sengupta S. K. Spectrochim. Acta A 2015, 140, 27. doi: 10.1016/j.saa.2014.12.040
[14]
8 Chandra S. ; Agrawal S. Spectrochim. Acta A 2014, 124, 564. doi: 10.1016/j.saa.2014.01.042
[15]
10 Onodera H. ; Nakajima A. ; Nakanishi T. ; Fushimi K. ; Hasegawa Y. J. Alloy. Compd. 2015, 648, 651. doi: 10.1016/j.jallcom.2015.06.140
[16]
11 Akerboom S. ; van den Elshout J. J. M. H. ; Mutikainen I. ; Siegler M. A. ; Fu W. T. ; Bouwman E. Eur. J. Inorg. Chem 2013, 2013 (36), 6137. doi: 10.1002/ejic.201301000
[17]
13 Zhang W. ; He W. ; Guo X. ; Chen Y. ; Wu L. ; Guo D. J. Alloy. Compd. 2015, 620, 383. doi: 10.1016/j.jallcom.2014.09.153
[18]
14 Li X. ; Wu X. S. ; Sun H. L. ; Xu L. J. ; Zi G. F. Inorg. Chim. Acta 2009, 362, 2837. doi: 10.1016/j.ica.2009.01.004
[19]
15 Chu L. F. ; Shi Y. ; Xu D. F. ; Yu H. ; Lin J. R. ; He Q. Z. Synth. React. Inorg. Met. -Org. Chem 2015, 45 (11), 1617. doi: 10.1080/15533174.2015.1031048
[20]
16 Lewis D. J. ; Pikramenou Z. Coordin. Chem. Rev 2014, 273-274, 213. doi: 10.1016/j.ccr.2014.03.019
[21]
18 Sun X. ; Jin X. ; Pan W. ; Wang J. Carbohyd. Polym. 2014, 113, 194. doi: 10.1016/j.carbpol.2014.07.017
[22]
19 Mangaiyarkarasi R. ; Chinnathambi S. ; Aruna P. ; Ganesan S. Biomed Pharmacother 2015, 69, 170. doi: 10.1016/j.biopha.2014.11.023
[23]
20 Heffern M. C. ; Matosziuk L. M. ; Meade T. J. Chem. Rev. 2014, 114, 4496. doi: 10.1021/cr400477t
[24]
23 Liu Y. Y. ; Decadt R. ; Bogaerts T. ; Hemelsoet K. ; Kaczmarek A. M. ; Poelman D. ; Waroquier M. ; Van Speybroeck V. ; Van Deun R. ; Van Der Voort P. J. Phys. Chem. C 2013, 117 (21), 11302.
[25]
25 Lee J. C. ; Jeong Y. K. ; Kim J. M. ; Kang J. G. Spectrochim. Acta A 2014, 124, 256. doi: 10.1016/j.saa.2013.12.117
[26]
26 Chen Z. M. ; Wang S. P. ; Yang N. ; Zhao N. ; Zhang J. J. ; Wang R. F. ; Zhao B. H. ; Russ. J Coord. Chem 2009, 35 (7), 541. doi: 10.1134/S1070328409070124