全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201510141

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用电化学方法合成Cu3(BTC)2-MOF (Cu3(BTC)2:均苯三甲酸合铜; MOF:金属有机框架化合物)催化剂并首次用于去除氮氧化物(NOx)的氨法选择催化还原(SCR)反应,通过优化溶剂、电解液浓度、电压、电解时间等反应条件,制备出纯净、晶型结构良好的Cu3(BTC)2材料,产率高达97.2%.应用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)、Raman光谱、原位傅里叶变换红外(in-situ FTIR)光谱、程序升温脱附(TPD)、X射线光电子能谱(XPS)等手段对催化剂的物理化学性能进行了表征,热重测试表明催化剂在310℃下可以保持良好的热稳定.应用于NH3-SCR反应,发现活化温度对Cu3(BTC)2的催化性能有很大影响,经240℃活化的Cu3(BTC)2的催化性能最佳,其220-280℃温度窗口下的NO转化率为90%,并用in-situ FTIR技术对NH3-SCR的反应机理进行了探究.
A Cu3(BTC)2 (copper(Ⅱ) benzene 1, 3, 5-tricarboxylate) metal organic framework (MOF) catalyst was successfully prepared through an electrochemical route and used for selective catalytic reduction of nitrogen oxide (NOx) with NH3 for the first time. After systematically optimizing the reaction conditions such as solvents, voltage, electrolyte concentration, and reaction time, pure Cu3(BTC)2 with high crystallinity was obtained in 97.2% yield. The physicochemical properties of the catalyst were determined using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Raman spectroscopy, in situ Fourier transform infrared (FTIR) spectroscopy, temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS). TGA results indicated that the framework was stable up to 310℃. The catalytic activity of Cu3(BTC)2 was evaluated using NO conversion as a model reaction. The Cu3(BTC)2 activation temperature significantly affected the catalytic activity. The Cu3(BTC)2 sample activated at 240℃ had the best catalytic activity and gave NO conversion of 90% at 220-280℃. A reaction mechanism was proposed based on the in situ FTIR spectroscopy results

References

[1]  戴韵; 李俊华; 彭悦; 唐幸福. 物理化学学报, 2012, 28 (7), 1772. doi: 10.3866/PKU.WHXB201204175
[2]  3 Granger P. ; Parvulescu V. I. Chem. Rev 2011, 111, 3156. doi: 10.1021/cr100168g
[3]  4 He H. ; Weng D. ; Zi X. Y. Environ Sci 2007, 28 (6), 1174. doi: 10.13227/j.hjkx.2007.06.001
[4]  贺泓; 翁端; 资新运. 环境科学, 2007, 28 (6), 1174. doi: 10.13227/j.hjkx.2007.06.001
[5]  5 Yao X. J. ; Gong Y. T. ; Li H. L. ; Yang F. M. Acta Phys. -Chim. Sin 2015, 31 (5), 818. doi: 10.3866/PKU.WHXB201503253
[6]  8 Li F. ; Lin T. ; Zhang Q. L. ; Gong M. C. ; Chen Y. Q. Chin. J.Catal 2009, 30 (2), 104.
[7]  李伟; 林涛; 张秋林; 龚茂初; 陈耀强. 催化学报, 2009, 30 (2), 104.
[8]  10 Liang Z. ; Marshall M. ; Chaffee A. L. Energy Fuels 2009, 23, 2787. doi: 10.1021/ef800938e
[9]  12 Zhang H. ; Deria P. ; Farha O. K. ; Hupp J. T. ; Snurr R. Q. Energy Environ. Sci 2015, 8, 1503. doi: 10.1039/c5ee00808e
[10]  13 Davydovskaya P. ; Pohle R. ; Tawil A. ; Fleischer M. Sens. Actuators B: Chem 2013, 187, 143. doi: 10.1016/j.snb.2012.10.023
[11]  14 Ye J. Y. ; Liu C. J. Chem. Commun 2011, 47, 2168. doi: 10.1039/c0cc04944a
[12]  15 Stock N. ; Biswas S. Chem. Rev 2012, 112, 934. doi: 10.1021/cr200304e
[13]  18 Joaristi A. M. ; Juan-Alca?iz J. ; Serra-Crespo P. ; Kapteijn F. ; Gascon J. Cryst. Growth Des 2012, 12, 3491. doi: 10.1021/cg300552w
[14]  22 Liu Y. ; Zhang T. ; Wu W. ; Jiang S. ; Zhang H. ; Li B. RSC Adv 2015, 5, 56021. doi: 10.1039/c5ra05595d
[15]  23 Yan B. ; Chen L. ; Liu Y. ; Zhu G. ; Wang C. ; Zhang H. ; Yang G. ; Ye H. ; Yuan A. Cryst. Eng. Comm 2014, 16, 10229. doi: 10.1039/c4ce01277a
[16]  29 Sun C. ; Zhu J. ; Lv Y. ; Qi L. ; Liu B. ; Gao F. ; Sun K. ; Dong L. ; Chen Y. Appl.Catal, B: Environ 2011, 103, 215. doi: 10.1016/j.apcatb.2011.01.028
[17]  1 Forzatti P. Appl. Catal. A: Gen 2001, 222 (1), 221. doi: 10.1016/S0926-860X(01)00832-8
[18]  2 Dai Y. ; Li J. H. ; Peng Y. ; Tang X. F. Acta Phys. -Chim. Sin 2012, 28 (7), 1772. doi: 10.3866/PKU.WHXB201204175
[19]  姚小江; 贡营涛; 李红丽; 杨复沫. 物理化学学报, 2015, 31 (5), 818. doi: 10.3866/PKU.WHXB201503253
[20]  6 Liu F. D. ; Shan W. P. ; Shi X. Y. ; He H. Progress in Chemistry 2012, 24 (4), 447.
[21]  刘福东; 单文坡; 石晓燕; 贺泓. 化学进展, 2012, 24 (4), 447.
[22]  7 Roy S. ; Hegde M. S. ; Madras G. Appl. Energ 2009, 86, 2290. doi: 10.1016/j.apenergy.2009.03.022
[23]  9 Chui S. S. Y. ; Lo S. M. F. ; Charmant J. P. ; Orpen A. G. ; Williams I. D. Science 1999, 283, 1148. doi: 10.1126/science.283.5405.1148
[24]  11 Luz I. ; Xamena F. X. L. I. ; Corma A. J.Catal 2012, 285, 286. doi: 10.1016/j.jcat.2011.10.001
[25]  16 Mueller U. ; Puetter H. ; Hesse M. ; Wessel H. Method for Electrochemical Production of a Crystalline Porous Metal Organic Skeleton Material. WO 2005/049892 2005.
[26]  21 Hu J. ; Cai H. ; Ren H. ; Wei Y. ; Xu Z. ; Liu H. ; Hu Y. Ind. Eng. Chem. Res 2010, 49, 12607. doi: 10.1021/ie1014958
[27]  26 Prestipino C. ; Regli L. ; Vitillo J. ; Bonino F. ; Damin A. ; Lamberti C. ; Zecchina A. ; Solari P. ; Kongshaug K. ; Bordiga S. Chem. Mater 2006, 18, 1342. doi: 10.1021/cm052191g
[28]  27 Vishwanathan V. ; Jun K. W. ; Kim J. W. ; Roh H. S. Appl. Catal. A: Gen 2004, 276, 253. doi: 10.1016/j.apcata.2004.08.011
[29]  31 Inomata M. ; Miyamoto A. ; Murakami Y. J.Catal 1980, 62 (1), 146. doi: 10.1016/0021-9517(80)90429-7
[30]  33 Liu F. ; He H. ; Zhang C. ; Shan W. ; Shi X. Catalysis Today 2011, 175, 23. doi: 10.1016/j.cattod.2011.02.049
[31]  34 Peng Y. ; Li K. ; Li J. Appl. Catal. B: Environ 2013, 140 doi: 10.1016/j.apcatb.2013.04.043
[32]  35 Chen L. ; Li J. ; Ge M. Environ. Sci. Technol 2010, 44, 9592. doi: 10.1021/es102692b
[33]  37 Qi G. ; Yang R. T. ; Chang R. Appl. Catal. B: Environ 2004, 51, 99. doi: 10.1016/j.apcatb.2004.01.023
[34]  17 Yang H. M. ; Song X. L. ; Yang T. L. ; Liang Z. H. ; Fan C. M. ; Hao X. G. RSC Adv 2014, 4, 15723. doi: 10.1039/c3ra47744d
[35]  19 Van Assche T. R. C. ; Desmet G. ; Ameloot R. ; De Vos D. E. ; Terryn H. ; Denayer J. F. M. Microporous Mesoporous Mat 2012, 158, 211. doi: 10.1016/j.micromeso.2012.03.029
[36]  20 Loera-Serna S. ; Oliver-Tolentino M. A. ; de Lourdes López-Nú? ez M. ; Santana-Cruz A. ; Guzmán-Vargas A. ; Cabrera-Sierra R. ; Beltrán H. I. ; Flores J. J. Alloy. Compd 2012, 540, 115. doi: 10.1016/j.jallcom.2012.06.030
[37]  24 Ameloot R. ; Pandey L. ; Van der Auweraer M. ; Alaerts L. ; Sels B. F. ; De Vos D. E. Chem. Commun 2010, 46, 3736. doi: 10.1039/c001544j
[38]  25 Hartmann M. ; Kunz S. ; Himsl D. ; Tangermann O. ; Ernst S. ; Wagener A. Langmuir 2008, 24, 8636. doi: 10.1021/la8008656
[39]  28 Zhang R. ; Teoh W. Y. ; Amal R. ; Chen B. ; Kaliaguine S. J.Catal 2010, 272, 212. doi: 10.1016/j.jcat.2010.04.001
[40]  30 Koebel M. ; Madia G. ; Raimondi F. ; Wokaun A. J.Catal 2002, 209, 159. doi: 10.1006/jcat.2002.3624
[41]  32 Takagi M. ; Kawai T. ; Soma M. ; Onishi T. ; Tamaru K. J.Phys. Chem 1976, 80 (4), 430. doi: 10.1021/j100545a019
[42]  36 Machida M. ; Uto M. ; Kurogi D. ; Kijima T. J.Mater. Chem 2001, 11, 903. doi: 10.1039/b007533g

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133