全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201603142

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过采用预估矫正的时域有限差分方法数值求解速率方程-光场强度方程,研究了纳秒激光脉冲在具有不同末端基团的对称性芴类衍生物分子2,7-双(4′-(二甲基氨基)苯乙烯基)-9-氢-芴(F1分子)和2,7-双(4′-硝基苯乙烯基)-9-氢-芴(F2分子)中的动力学传播过程以及光限幅效应,分析了两种分子的光限幅特性随传播距离(z)、粒子数密度(N)以及脉冲宽度(τ)的变化情况,并且拟合了两种分子的动态双光子吸收(TPA)截面。计算结果表明,该系列分子具有较大的双光子吸收截面以及较好的光限幅效应。此外,F2分子的末端基团―NO2与F1分子的末端基团―N(CH3)2相比具有更强的得电子能力,因而使得F2分子具有更大的跃迁偶极矩,双光子吸收截面增大,光限幅效应更为明显。
The nanosecond-scale propagations and optical-limiting properties of two fluorene derivatives-2, 7-bis(4′-(dimethylamino)-distyryl)-9H-fluorene (F1) and 2,7-bis(4′-(nitro)-distyryl)-9H-fluorene (F2) with different terminal groups are investigated by solving the coupled rate equations and field intensity equation using an iterative predictor-corrector finite-difference time-domain technique. The influence of the propagation distance (z), particle number density (N), and pulse width (τ) on the optical-limiting properties and two-photon absorption (TPA) of these molecules is analyzed. The calculations show that both F1 and F2 possess large two-photon absorption cross sections and pronounced optical-limiting properties. In addition, the nonlinear optical properties depend crucially on the terminal groups. F2, with terminal groups of ―NO2, has much larger dipole moments, an enhanced two-photon absorption cross section, and superior optical-limiting ability compared with F1, which have terminal groups of ―N(CH3)2

References

[1]  1 Chen J. ; Wang S. Q. ; Yang G. Q. Acta Phys. -Chim. Sin 2015, 31, 595. doi: 10.3866/PKU.WHXB201502023
[2]  陈军; 王双青; 杨国强. 物理化学学报, 2015, 31 (595) doi: 10.3866/PKU.WHXB201502023
[3]  2 Zheng L. S. ; Feng M. ; Zhan H. B. Acta Phys. -Chim. Sin 2012, 28, 208. doi: 10.3866/PKU.WHXB201228208
[4]  郑立思; 冯苗; 詹红兵. 物理化学学报, 2012, 28, 208. doi: 10.3866/PKU.WHXB201228208
[5]  5 Xu H. ; Song Y. L. ; Meng X. R. ; Hou H.W. ; Tang M. S. ; Fan Y. T. Chem. Phys 2009, 359, 101. doi: 10.1016/j.chemphys.2009.03.011
[6]  8 Fan J. L. ; Hu M. M. ; Zhan P. ; Peng X. J. Chem. Soc. Rev 2013, 42, 29. doi: 10.1039/C2CS35273G
[7]  9 Ma H. ; Leng J. C. ; Liu M. ; Zhao L. N. ; Jiao Y. Opt.Commun 2015, 350, 144. doi: 10.1016/j.optcom.2015.04.013
[8]  11 Belfield K. D. ; Bondar M. V. ; Hernandez F. E. ; Przhonska O.V. ; Wang X. ; Yao S. Phys. Chem. Chem. Phys 2011, 13, 4303.
[9]  13 Zhang Y. J. ; Zhou Y. ; Ma J. Y. ; Chen Y. ; Wang C. K. J. At.Mol. Sci 2014, 5, 254. doi: 10.4208/jams.032714.062614a
[10]  14 Jia H. H. ; Zhao K. ; Wu X. L. Chem. Phys. Lett 2014, 612, 151. doi: 10.1016/j.cplett.2014.08.022
[11]  15 Han G. C. ; Zhao K. ; Liu P.W. ; Zhang L. L. Chin. Phys. B 2012, 21, 118201. doi: 10.1088/1674-1056/21/11/118201
[12]  22 Lin N. ; Liu X. Y. ; Diao Y.Y. ; Xu X. ; Chen c. ; Ouyang x. ; Yang h. ; Ji W. Adv. Funct. Mater 2012, 22, 361. doi: 10.1002/adfm.201100649
[13]  24 Sun Y. P. ; Liu J. C. ; Wang C. K. Acta Opt. Sin 2009, 29, 1621d. doi: 10.3788/AOS
[14]  3 Zhang Y. J. ; Yang W. J. ; Fan J. Z. ; Song Y. Z. ; Wang C. K. Chin. J. Chem. Phys 2015, 28, 257. doi: 10.1063/1674-0068/28/cjcp1503039
[15]  4 Yao C. B. ; Zhang Y. D. ; Chen D. T. ; Yin H. T. ; Yu C. Q. ; Li J. ; Yuan P. Opt. Laser Technol 2013, 47, 228. doi: 10.1016/j.optlastec.2012.08.039
[16]  6 Ouyang X. H. ; Zeng H. P. ; Ji W. J. Phys. Chem. B 2009, 113, 14565. doi: 10.1021/jp905390q
[17]  7 Li D. D. ; Zhang Q. ; Sun X. S. ; Shao N. Q. ; Li R. ; Li S. L. ; Zhou H. P. ; Wu J. Y. ; Tian Y. P. Dyes and Pigments 2014, 102, 79. doi: 10.1016/j.dyepig.2013.10.028
[18]  10 Velusamy M. ; Shen J. Y. ; Lin J. T. ; Lin Y. C. ; Hsieh C. C. ; Lai C. H. ; Lai W. C. ; Ho M. L. ; Chen Y. C. ; Chou P. T. ; Hsiao J. K. Adv. Funct. Mater 2009, 19, 2388. doi: 10.1002/adfm.v19:15
[19]  12 Ma H. ; Leng J. C. ; Liu M. ; Zhao L. N. ; Jiao Y. J. Nonliear.Opt. Phys 2015, 24, 1550046. doi: 10.1142/S0218863515500460
[20]  16 Liu P.W. ; Zhao K. ; Han G. C. Chem. Phys. Lett 2011, 514, 226. doi: 10.1016/j.cplett.2011.08.069
[21]  17 Zhao K. ; Liu P.W. ; Wang C. K. ; Luo Y. J. Phys. Chem. B 2010, 114, 10814. doi: 10.1021/jp103791s
[22]  18 Ding H. J. ; Sun J. ; Zhang Y. J. ; Wang C. K. Chem. Phys. Lett 2014, 591, 142. doi: 10.1016/j.cplett.2013.11.015
[23]  19 Zhou Y. ; Miao Q. ; Sun Y. P. ; Gel′mukhanov F. ; Wang C. K. J. Phys. B: At. Mol. Opt. Phys 2011, 44, 035103. doi: 10.1088/0953-4075/44/3/035103
[24]  20 Wang C. K. ; Zhao P. ; Miao Q. ; Sun Y. P. ; Zhou Y. J. Phys. B:At. Mol. Opt. Phys 2010, 43, 105601. doi: 10.1088/0953-4075/43/10/105601
[25]  21 Zheng Q. D. ; Gupta S. K. ; He G. S. ; Tan L. S. ; Prasad P. N. Adv. Funct. Mater 2008, 18, 2770. doi: 10.1002/adfm.v18:18
[26]  23 Li C.W. ; Yang K. ; Feng Y. ; Su X. Y. ; Yang J. Y. ; Jin X. ; Shui M. ; Wang Y. X. ; Zhang X. R. ; Song Y. L. ; Xu H. Y. J. Phys. Chem. B 2009, 113, 15730. doi: 10.1021/jp906057y
[27]  25 Baev A. ; Gel′mukhanov F. ; k P. M. ; Luo Y. ; ?grena H. J. Chem. Phys 2002, 117, 6214. doi: 10.1063/1.1499719
[28]  26 Allard N. ; Kielkopf J. Rev. Mod. Phys 1982, 54, 1103. doi: 10.1103/RevModPhys.54.1103
[29]  27 Wang C. K. ; Liu J. C. ; Zhao K. ; Sun Y. P. ; Luo Y. J. Opt. Soc.Am. B 2007, 24, 2436. doi: 10.1364/JOSAB.24.002436

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133