全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201606223

Full-Text   Cite this paper   Add to My Lib

Abstract:

在773 K条件下,研究了La(III)在LiCl-KCl熔盐中W和Ni电极上的电化学行为。La(III)还原反应是一步三电子转移的准可逆反应;通过在Ni电极上直接电沉积La的方法可以获得La-Ni金属间化合物;恒电位电解可以获得含三种金属间化合物(LaNi5、La7Ni16和La2Ni3)的La-Ni合金层,并且通过X射线衍射仪(XRD)和扫描电镜-能谱分析仪(SEM-EDS)确定物相并表征结构。采用开路计时电位法估算了LaNi5金属间化合物的标准生成吉布斯自由能。揭示了恒电位电解方法是制备La-Ni镀层合金以及提取熔盐中La的有效方法。
Electrochemical and thermodynamic studies on the formation of La-Ni intermetallic compounds in molten LiCl-KCl-(3.5%(w))LaCl3 at 773 K were performed. The electrochemical reduction of La(III) ions was investigated on inert W and reactive Ni electrodes by cyclic voltammetry. The reduction potential of La(III)/La on a Ni electrode was observed at more positive potential than that on a W electrode because of the formation of La-Ni intermetallic compounds when La ions reacted with the Ni substrate. Square-wave voltammetry, chronopotentiometry, and open-circuit chronopotentiometry provided further evidence for the formation of La-Ni intermetallic compounds. Potentiostatic electrolysis on a Ni electrode led to the formation of three La-Ni intermetallic compounds, LaNi5, La7Ni16 and La2Ni3, according to X-ray diffraction (XRD) and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) analyses. The standard Gibbs free energies of formation for LaNi5 were estimated from open-circuit chronopotentiometric measurements using the Gibbs-Helmholtz equation and Hess law. The formation of the La-Ni alloy layer could be controlled by the applied potential and time. Potentiostatic electrolysis was an effective method for electrochemical extraction of La

References

[1]  1 Castrillejo Y. ; Bermejo M. R. ; Martinez A. M. ; Diaz Arcas P J. Min. Metall. Sect. B: Metall. 2003, 39 (102), 109.
[2]  3 Vandarkuzhali S. ; Gogoi N. ; Ghosh S. ; Prabhakara Reddy B. ; Nagarajan K Electrochim. Acta 2012, 59, 245. doi: 10.1016/j.electacta.2011.10.062
[3]  7 Han W. ; Zhang Y. ; Ye K. ; Yan Y. ; Zhang M Metall. Mater. Trans. B 2010, 41 (5), 1123. doi: 10.1007/s11663-010-9395-z
[4]  9 Hsu S. E. ; Beibutian V. M. ; Yeh M. T J. Alloy. Compd. 2002, 330-332, 882. doi: 10.1016/S0925-8388(01)01669-3
[5]  15 Chamelot P. ; Massot L. ; Hamel C. ; Nourry C. ; Taxil P J. Nucl. Mater. 2007, 360 (1), 64. doi: 10.1016/j.jnucmat.2006.08.015
[6]  17 Chandra M. ; Vandarkuzhali S. ; Ghosh S. ; Gogoi N. ; Venkatesh P. ; Seenivasan G. ; Reddy B. P. ; Nagarajan K Electrochim. Acta 2011, 58, 150. doi: 10.1016/j.electacta.2011.09.012
[7]  22 Okamoto H J. Phase Equilib. 2001, 22 (6), 693. doi: 10.1007/s11669-001-0048-4
[8]  23 Ramaley L. ; Krause M. S Anal. Chem 1969, 41 (11), 1362. doi: 10.1021/ac60280a005
[9]  26 von Barner J. H. ; Noyé P. ; Barhoun A. ; Lantelme F J. Electrochem. Soc 2005, 152 doi: 10.1149/1.1833313
[10]  27 Dischinger J. ; Schaller H. J J. Alloy. Compd. 2000, 312 (1-2), 201. doi: 10.1016/S0925-8388(00)01151-8
[11]  4 Fabian C. P. ; Luca V. ; Chamelot P. ; Massot L. ; Caravaca C. ; Lumpkin G. R J. Electrochem. Soc. 2012, 159 (4), F63. doi: 10.1149/2.057204jes
[12]  5 Qiao H. ; Nohira T. ; Ito Y J. Alloy. Compd. 2003, 359 (1-2), 230. doi: 10.1016/S0925-8388(03)00203-2
[13]  13 Ao B. Y. ; Chen S. X. ; Jiang G. Q J. Alloy. Compd. 2005, 390 (1-2), 122. doi: 10.1016/j.jallcom.2004.05.092
[14]  18 Iida T. ; Nohira T. ; Ito Y Electrochim. Acta 2001, 46 (16), 2537. doi: 10.1016/S0013-4686(01)00470-4
[15]  20 Yasuda K. ; Kobayashi S. ; Nohira T. ; Hagiwara R Electrochim. Acta 2013, 92, 349. doi: 10.1016/j.electacta.2013.01.049
[16]  14 Kandavel M. ; Bhat V. V. ; Rougier A. ; Aymard L. ; Nazri G.A. ; Tarascon J. M Int. J. Hydrog. Energy 2008, 33 (14), 3754. doi: 10.1016/j.ijhydene.2008.04.042
[17]  16 Sa?la A. ; Gibilaro M. ; Massot L. ; Chamelot P. ; Taxil P. ; Affoune A. M J. Electroanal. Chem. 2010, 642 (2), 150. doi: 10.1016/j.jelechem.2010.03.002
[18]  21 Sangster J. ; Pelton A. D J. Phase Equilib. 1991, 12 (2), 203. doi: 10.1007/BF02645715
[19]  24 Osteryoung J. G. ; Osteryoung R. A Anal. Chem 1985, 57 doi: 10.1021/ac00279a789
[20]  25 Okamoto H J. Phase Equilib. 2002, 23 (3), 287. doi: 10.1361/105497102770331884
[21]  2 Masset P. ; Konings R. J. M. ; Malmbeck R. ; Serp J. ; Glatz J P. J. Nucl. Mater. 2005, 344 (1-3), 173. doi: 10.1016/j.jnucmat.2005.04.038
[22]  6 Lantelme F. ; Cartailler T. ; Berghoute Y. ; Hamdani M J. Electrochem. Soc. 2001, 148 (9), C604. doi: 10.1149/1.1385819
[23]  8 Rong Q. ; Schaller H. J J. Alloy. Compd. 2004, 365 (1-2), 188. doi: 10.1016/S0925-8388(03)00667-4
[24]  10 Srivastava S. ; Srivastava O. N J. Alloy. Compd. 1999, 290 (1-2), 250. doi: 10.1016/S0925-8388(99)00196-6
[25]  11 Prigent J. ; Joubert J. M. ; Gupta M J. Solid State Chem. 2011, 184 (1), 123. doi: 10.1016/j.jssc.2010.10.037
[26]  12 Dhaou H. ; Askri F. ; Ben Salah M. ; Jemni A. ; Ben Nasrallah S. ; Lamloumi J Int. J. Hydrog. Energy 2007, 32 (5), 576. doi: 10.1016/j.ijhydene.2006.07.001
[27]  19 Iida T. ; Nohira T. ; Ito Y Electrochim. Acta 2003, 48 (11), 1531. doi: 10.1016/S0013-4686(03)00031-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133