通过甩带快淬法制备三元合金(Fe0.81Ga0.19)100-xBx (Fe-Ga-B)和(Fe0.81Ga0.19)100-xInx (Fe-Ga-In)薄带样品,并对Fe-Ga-B合金样品进行热处理。通过高分辨X射线衍射(HRXRD)和扩展X射线吸收精细结构谱(EXAFS)技术表征薄带的微观结构,利用振动样品磁强计和标准电阻应变仪测量了样品的磁性及饱和磁致伸缩系数。研究表明,有序的L12相降低了(Fe0.81Ga0.19)98B2样品的磁致伸缩系数。B原子添加形成的Fe2B相和modified-DO3相有利于提高Fe-Ga合金的磁致伸缩系数。但Fe2B相的饱和磁化强度小于A2相,饱和磁场却远大于A2相,因此随着B含量的增加,Fe-Ga-B薄带的饱和磁化强度逐渐减小,矫顽力逐渐增加。合金中形成的非磁性富In相使得In掺杂Fe-Ga-In合金的磁致伸缩系数和饱和磁化强度均减小。非磁性富In相使晶格产生畸变,减弱了磁弹性效应,并且抑制了磁畴的运动,从而明显地减小了Fe-Ga带材样品的磁致伸缩系数以及饱和磁化强度,提高了Fe-Ga合金的矫顽力。 Two series of (Fe0.81Ga0.19)100-xBx (Fe-Ga-B) and (Fe0.81Ga0.19)100-xInx (Fe-Ga-In) ribbons were successfully prepared with melt spinning method. Thermal treatments were afterwards conducted out on these Fe-Ga-B ribbons. The sample microstructures of the alloys were examined by high resolution X-ray diffraction (HRXRD) and extended X-ray absorption fine structure (EXAFS). The magnetic properties were measured by a vibrating sample magnetometer (VSM) at room temperature. The magnetostriction constant, measured by resistance strain gauge method, of the melt-spun (Fe0.81Ga0.19)98B2 ribbon decreased sharply due to the L12 phase. Both the Fe2B and modified-DO3 phases played a positive role in increasing the magnetostriction constant of the Fe-Ga alloys. The Fe2B phase presented a lower saturation magnetization and a larger saturation field. As the B composition increased, the saturation magnetization of the ribbons decreased and the coercivity intensified. For the Fe-Ga-In ribbons, the non-magnetic In-rich phase was formed, leading to their lattices distortion and, hence, the magnetoelastic effect was weakened. The non-magnetic In-rich phase could suppress the movements of the magnetic domain and domain wall. Therefore, In-doping decreased the saturation magnetostriction and saturation magnetization of the Fe-Ga alloy. In-doping could also increase the coercivity of the Fe-Ga alloy. The addition of B and In changed the microstructures of the Fe-Ga alloys and accordingly their magnetic properties and magnetostriction
References
[1]
31 Lograsso T. A. ; Ross A. R. ; Schlagel D. L. ; Clark A. E. ; Wun-Fogle M. J.Alloy. Compd. 2003, 350, 95. doi: 10.1016/S0925-8388(02)00933-7
[2]
2 Restorff J. B. ; Wun-Fogle M. ; Clark A. E. ; Ross A. R. ; Schlagel D. L. J. Appl. Phys. 2002, 91, 8225. doi: 10.1063/1.1452220
[3]
6 Yao Z. ; Tian X. ; Jiang L. ; Hao H. ; Zhang G. ; Wu S. ; Zhao Z. ; Gerile N. J.Alloy. Compd. 2015, 637, 431. doi: 10.1016/j.jallcom.2015.03.009
[4]
7 Lin Y. ; Lin C. IEEE Trans. Magn. 2015, 51, 2505204. doi: 10.1109/TMAG.2015.2451952
[5]
8 Ma T. ; Hu S. ; Bai G. ; Yan M. ; Lu Y. ; Li H. ; Peng X. ; Ren X. Appl. Phys. Lett. 2015, 106, 112401. doi: 10.1063/1.4915308
[6]
9 Fitchorov T. I. ; Bennett S. ; Jiang L. ; Zhang G. ; Zhao Z. ; Chen Y. ; Harris V. G. Acta Mater. 2014, 73, 19. doi: 10.1016/j.actamat.2014.03.053
[7]
10 Clark A. E. ; Restorff J. B. ; Wun-Fogle M. ; Hathaway K. B. ; Lograsso T. A. ; Huang M. ; Summers E. J.Appl. Phys. 2007, 101, 09C. doi: 10.1063/1.2670376
[8]
11 Bormio-Nunes C. ; dos Santos C. T. ; Leandro I. F. ; Turtelli R. S. ; Gr?ssinger R. ; Atif M. J.Appl. Phys. 2011, 109, 07A. doi: 10.1063/1.3561782
[9]
12 Li J. H. ; Gao X. X. ; Xie J. X. ; Yuan C. ; Zhu J. ; Yu R. B. Intermetallics 2012, 26, 66. doi: 10.1016/j.intermet.2012.02.019
[10]
13 Na S. ; Flatau A. B. J.Appl. Phys. 2007, 101, 09N. doi: 10.1063/1.2712822
[11]
15 Shah L. R. ; Fan X. ; Kou X. ; Wang W. G. ; Zhang Y. P. ; Lou J. ; Sun N. X. ; Xiao J. Q. J.Appl. Phys. 2010, 107, 09D. doi: 10.1063/1.3360351
[12]
16 Gao J. S. ; Yang A. ; Chen Y. ; Kirkland J. P. ; Lou J. ; Sun N. X. ; Vittoria C. ; Harris V. G. J.Appl. Phys. 2009, 105, 07A. doi: 10.1063/1.3072027
[13]
18 Nan T. X. ; Zhou Z. Y. ; Lou J. ; Liu M. ; Yang X. ; Gao Y. ; Rand S. ; Sun N. X. Appl. Phys. Lett. 2012, 100, 132409. doi: 10.1063/1.3698363
[14]
19 Sun A. ; Liu J. ; Jiang C. J. Mater. Sci. 2014, 49, 4565. doi: 10.1007/s10853-014-8156-9
22 Basumatary H. ; Palit M. ; Chelvane J. A. ; Pandian S. ; Raja M. M. ; Chandrasekaran V. J.Magn. Magn. Mater. 2010, 322, 2769. doi: 10.1016/j.jmmm.2010.04.024
[17]
23 Liu H. ; Wang H. O. ; Cao M. X. ; Tan W. S. ; Shi Y. G. ; Chen Y. ; Huang Y. Y. Nucl. Techn. 2013, 36, 030102.
24 Barinov V. A. ; Dorofeev G. A. ; Ovechkin L. V. ; Elsukov E. P. ; Ermakov A. E. Phys. Status Solidi A 1991, 123, 527. doi: 10.1002/pssa.2211230217
[20]
30 Huang M. ; Lograsso T. A. ; Clark A. E. ; Restorff J. B. ; Wun-Fogle M. J.Appl. Phys. 2008, 103, 07B. doi: 10.1063/1.2829402
[21]
1 Clark A. E. ; Restorff J. B. ; Wun-Fogle M. ; Lograsso T. A. ; Schlagel D. L. IEEE Trans. Magn. 2000, 36, 3238. doi: 10.1109/20.908752
[22]
3 Kawamiya N. ; Adachi K. ; Nakamura Y. J. Phys. Soc. Jpn. 1973, 33, 1318.
[23]
4 Li J. ; Xiao X. ; Yuan C. ; Gao X. ; Bao X. J. Rare Earths 2015, 33, 1087. doi: 10.1016/S1002-0721(14)60530-5
[24]
5 Lin Y. ; Lin C. J.Appl. Phys. 2015, 117, 17A920. doi: 10.1109/TMAG.2015.2451952
[25]
14 Na S. ; Flatau A. B. J.Appl. Phys. 2008, 103, 07D. doi: 10.1063/1.2838772
[26]
17 Lou J. ; Insignares R. E. ; Cai Z. ; Ziemer K. S. ; Liu M. ; Sun N. X. Appl. Phys. Lett. 2007, 91, 182504. doi: 10.1063/1.2804123
[27]
20 Gong Y. ; Jiang C. B. ; Xu H. B. Acta Metall. Sin. 2006, 42, 830. doi: 10.3321/j.issn:0412-1961.2006.08.010
[28]
21 Ravel B. ; Newville M. J.Synchrotron Radiat. 2005, 12, 537. doi: 10.1107/S0909049505012719
[29]
25 Fdez-Gubieda M. L. ; García-Arribas A. ; Barandiarán J. M. ; Antón R. L. ; Orue I. ; Gorria P. ; Pizzini S. ; Fontaine A. Phys. Rev. B 2000, 62, 5746. doi: 10.1103/PhysRevB.62.5746
[30]
26 Kubota T. ; Inoue A. Mater. Trans. 2004, 45, 199. doi: 10.2320/matertrans.45.199
[31]
27 Wu R. J.Appl. Phys. 2002, 91, 7358. doi: 10.1063/1.1450791
[32]
28 Clark A. E. ; Wun-Fogle M. ; Restorff J. B. ; Lograsso T. A. ; Cullen J. R. IEEE Trans. Magn. 2001, 37, 2678. doi: 10.1109/20.951272
[33]
29 Srisukhumbowornchai N. ; Guruswamy S. J.Appl. Phys. 2001, 90, 5680. doi: 10.1063/1.1412840