全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 


DOI: 10.3866/PKU.WHXB201805054

Full-Text   Cite this paper   Add to My Lib

Abstract:

甲烷部分氧化制合成气反应(POM)是天然气、页岩气资源利用的重要途径之一,常用的Ni/SiO2催化剂在反应中易发生表面积炭而失活。为了解决这一问题,我们采用尿素沉淀法制备W修饰的Ni基催化剂,并考察其在POM反应中的稳定性和W的作用。结果表明,催化剂中适量W的存在可显著改善其POM反应稳定性。其原因为Ni-W作用修饰了Ni的化学态或其亲氧能力,从而改善了其表面抗积炭能力。此外,反应中催化剂表面形成的α-WC具有一定的抑制表面积炭形成的能力,且该α-WC具有良好的稳定性。
With the discovery and large-scale exploitation of natural gas resources such as shale gas and combustible ice, which are mainly composed of methane, their effective utilization has become a national strategic interest. Partial oxidation of methane (POM) to synthesis gas is one of the important methods for the utilization of natural gas and shale gas resources. The commonly used Ni/SiO2 catalyst for POM easily deactivates due to carbon deposition on the surface. To solve this problem, a urea precipitation method was employed in this work to prepare Ni-based catalysts modified with different amounts of tungsten (at W/Ni molar ratios of 0, 0.01, 0.03, 0.05, 0.07, and 0.10), and the catalyst stability in POM as well as the role of W were investigated. From characterizations such as X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS), we obtained the following results. The amount of W added to the Ni-based catalysts has a significant influence on their catalytic performances in POM and their physicochemical properties. The particle size of Ni in the catalysts decreases with W addition, and the Ni particle distribution on the support surfaces becomes more uniformed; however, the catalytic activity for POM is not significantly influenced. However, W-modified Ni-based catalysts show an increasing improvement in their stability in POM with increasing W/Ni molar ratio, with an optimum at the W/Ni molar ratio of 0.07; at the W/Ni molar ratio of 0.10, they exhibit a rapid deactivation in POM in a short time. Although interactions between Ni and SiO2 in the as-prepared catalysts are weak, the presence of adequate tungsten (W/Ni molar ratio of 0.05 and above) in the Ni-based catalysts can reduce the Ni particle size to some extent, and lead to the formation of strong interactions between Ni and W, which leads to an improvement in the dispersion of Ni on the support surface and imparts resistance for Ni particle growth in the POM reaction. The increased interaction between Ni and W changes the chemical state or oxygen affinity of Ni particles on the catalyst surfaces, and some of the partially oxidized Ni species (Niδ+) on the catalyst surfaces coexist with reduced Ni species (Ni0) during POM. Using an adequate amount of W-modified

References

[1]  4 Guo S. S. ; Wang J. W. ; Ding C. M. ; Duan Q. L. ; Ma Q. ; Zhang K. ; Liu P. Int. J. Hydrog. Energy 2018, 43, 6603. doi: 10.1016/j.ijhydene.2018.02.035
[2]  5 Yang M. H. ; Wu H. H. ; Wu H. Y. ; Huang C. J. ; Weng W. Z. ; Chen M. S. ; Wan H. L. RSC Adv. 2016, 6, 81237. doi: 10.1039/c6ra15358e
[3]  7 Rodemerck U. ; Schneider M. ; Linke D. Catal. Commun. 2017, 102, 98. doi: 10.1016/j.catcom.2017.08.031
[4]  12 Wu H. J. ; Pantaleo G. ; La Parola V. ; Venezia A. M. ; Collard X. ; Aprile C. ; Liotta L. F. Appl. Catal. B 2014, 156- 157. doi: 10.1016/j.apcatb.2014.03.018
[5]  13 Zhu J. Q. ; Peng X. X. ; Yao L. ; Tong D. M. ; Hu C. W. Catal. Sci. Technol. 2012, 2, 529. doi: 10.1039/c1cy00333j
[6]  6 Kim D. ; Park G. A. ; Lim J. ; Ha K. S. Chem. Eng. J. 2017, 316, 1011. doi: 10.1016/j.cej.2017.02.014
[7]  8 Li L. ; He S. C. ; Song Y. Y. ; Zhao J. ; Ji W. J. ; Au C. T. J. Catal. 2012, 288, 54. doi: 10.1016/j.jcat.2012.01.004
[8]  9 Wang F. G. ; Han B. L. ; Zhang L. J. ; Xu L. L. ; Yu H. ; Shi W. D. Appl. Catal. B 2018, 235, 26. doi: 10.1016/j.apcatb.2018.04.069
[9]  李琪; 侯玉慧; 董玲玉; 黄铭湘; 翁维正; 夏文生; 万惠霖. 物理化学学报, 2013, 29, 2245. doi: 10.3866/PKU.WHXB201308201
[10]  14 Wang Y. L. ; Li Q. ; Weng W. Z. ; Xia W. S. ; Wan H. L. Acta Phys. -Chim. Sin. 2016, 32, 2776. doi: 10.3866/PKU.WHXB201608302
[11]  15 Zhao X. Y. ; Li H. R. ; Zhang J. P. ; Shi L. Y. ; Zhang D. S. Int. J. Hydrog. Energy 2016, 41, 2447. doi: 10.1016/j.ijhydene.2015.10.111
[12]  16 Zhang S. H. ; Shi C. ; Chen B. B. ; Zhang Y. L. ; Qiu J. S. Catal. Commun. 2015, 69, 123. doi: 10.1016/j.catcom.2015.06.003
[13]  18 Li J. F. ; Xiao B. ; Yan R. ; Yi R. J. Chem. Eng. 2007, 35, 53.
[14]  29 Mohammadzadeh Valendar H. ; Yu D. W. ; Barati M. ; Rezaie H. J. Therm. Anal. Calorim. 2016, 128, 553. doi: 10.1007/s10973-016-5883-y
[15]  1 Chai R. J. ; Zhang Z. Q. ; Chen P. J. ; Zhao G. F. ; Liu Y. ; Lu Y. Microporous Mesoporous Mater. 2017, 253, 123. doi: 10.1016/j.micromeso.2017.07.005
[16]  2 Luo Z. ; Kriz D. A. ; Miao R. ; Kuo C. H. ; Zhong W. ; Guild C. ; He J. K. ; Willis B. ; Dang Y. L. ; Suib S. L. ; et al Appl. Catal. A 2018, 554, 54. doi: 10.1016/j.apcata.2018.01.020
[17]  10 Ashok J. ; Bian Z. ; Wang Z. ; Kawi S. Catal. Sci. Technol. 2018, 8, 1730. doi: 10.1039/c7cy02475d
[18]  11 Li Q. ; Hou Y. H. ; Dong L. Y. ; Huang M. X. ; Weng W. Z. ; Xia W. S. ; Wan H. L. Acta Phys. -Chim. Sin. 2013, 29, 2245. doi: 10.3866/PKU.WHXB201308201
[19]  19 Jiang J. T. ; Wei X. J. ; Xu C. Y. ; Zhou Z. X. ; Zhen L. J. Magn. Magn. Mater. 2013, 334, 111. doi: 10.1016/j.jmmm.2012.12.036
[20]  20 Ding C. M. ; Wang J. W. ; Ai G. G. ; Liu S. B. ; Liu P. ; Zhang K. ; Han Y. L. ; Ma X. S. Fuel 2016, 175, 1. doi: 10.1016/j.fuel.2016.02.024
[21]  21 He S. F. ; Zheng X. M. ; Mo L. Y. ; Yu W. J. ; Wang H. ; Luo Y. M. MRS Bull. 2014, 49, 108. doi: 10.1016/j.materresbull.2013.08.051
[22]  22 Xia W. S. ; Hou Y. H. ; Chang G. ; Weng W. Z. ; Han G. B. ; Wan H. L. Int. J. Hydrog. Energy 2012, 37, 8343. doi: 10.1016/j.ijhydene.2012.02.141
[23]  23 Solsona B. ; López Nieto J. M. ; Concepción P. ; Dejoz A. ; Ivars F. ; Vázquez M. I. J. Catal. 2011, 280, 28. doi: 10.1016/j.jcat.2011.02.010
[24]  24 Venugopal A. ; Naveen Kumar S. ; Ashok J. ; Hari Prasad D. ; Durga Kumari V. ; Prasad K. B. S. ; Subrahmanyam M. Int. J. Hydrog. Energy 2007, 32, 1782. doi: 10.1016/j.ijhydene.2007.01.007
[25]  25 Arbag H. ; Yasyerli S. ; Yasyerli N. ; Dogu T. ; Dogu G. Top. Catal. 2013, 56, 1695. doi: 10.1007/s11244-013-0105-3
[26]  26 Theofanidis S. A. ; Galvita V. V. ; Poelman H. ; Marin G. B. ACS Catal. 2015, 5, 3028. doi: 10.1021/acscatal.5b00357
[27]  27 Xia W. S. ; Chang G. ; Hou Y. H. ; Weng W. Z. ; Wan H. L. Acta Phys. -Chim. Sin. 2011, 27, 1567. doi: 10.3866/PKU.WHXB20110627
[28]  夏文生; 常刚; 侯玉慧; 翁维正; 万惠霖. 物理化学学报, 2011, 27, 1567. doi: 10.3866/PKU.WHXB20110627
[29]  28 Xia W. S. ; Chen R. F. ; Wang Y. L. ; Li Q. ; Weng W. Z. ; Wan H. L. Xiamen Univ. J. Nat. Sci. Ed. 2015, 54, 17. doi: 10.6043/j.issn.0438-0479.2015.05.17
[30]  夏文生; 陈蓉芳; 王雅莉; 李琪; 翁维正; 万惠霖. 厦门大学学报(自然科学版), 2015, 54, 17. doi: 10.6043/j.issn.0438-0479.2015.05.17
[31]  3 Wang F. ; Li W. Z. ; Lin J. D. ; Chen Z. Q. ; Wang Y. Appl. Catal. B 2018, 231, 292. doi: 10.1016/j.apcatb.2018.03.018
[32]  王雅莉; 李琪; 翁维正; 夏文生; 万惠霖. 物理化学学报, 2016, 32, 2776. doi: 10.3866/PKU.WHXB201608302
[33]  17 Claridge J. B. ; York A. P. E. ; Brungs A. J. ; Marquez-Alvarez C. ; Sloan J. ; Tsang S. C. ; Green M. L. H. J. Catal. 1998, 180, 85. doi: 10.1006/jcat.1998.2260
[34]  李建芬; 肖波; 晏蓉; 易仁金. 化学工程, 2007, 35, 53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133