|
- 2017
尺寸可控的单分散四氧化三铁微球的省时制备
|
Abstract:
用溶剂热法制备了单分散性较好、尺寸可控,饱和磁化强度高的四氧化三铁磁性微球,并用多种手段调控制备了不同尺寸和形貌的四氧化三铁微球,如氯化铁、醋酸钠、水的量以及反应时间。结果表明所得四氧化三铁产物纯净、结晶度高,形状近乎球形、无团聚,大小均一、具有很好的单分散性。此方法可以在2-4 h内制备400-700 nm范围内尺寸可控、高饱和磁化强度的四氧化三铁微球,产率达到了94%。
Monodisperse Fe3O4 microspheres with tunable diameters and high magnetic saturation were synthesized by a solvothermal reduction method. It was found that the morphology and structure of the Fe3O4 microspheres could be tuned by simply altering the amount of the reactants such as ferric chloride, sodium acetate, water, and the reaction time. The Fe3O4 microspheres obtained via this method possessed high purity, crystallinity, and a nearly spherical shape. Furthermore, they were monodispersed and no aggregation was found. Such monodisperse Fe3O4 microspheres had tunable diameters of 400-700 nm and the fabrication time was only 2-4 h. The products showed high magnetic saturation values, and their yields were typically more than 94%
[1] | 14 Yan L. ; Wang Y. F. ; Li J. ; Shen H. D. ; Wang C. ; Yang S. B. J. Mater. Sci.-Mater. Electron. 2016, 27, 10616. doi: 10.1007/s10854-016-5156-3 |
[2] | 17 Wang Z. ; Hong R. Y. J. Polym. Res. 2016, 23, 1. doi: 10.1007/s10965-015-0897-x |
[3] | 18 Gee S. H. ; Hong Y. K. ; Erickson D. W. ; Park M. H. J. Appl. Phys. 2003, 93, 7560. doi: 10.1063/1.1540177 |
[4] | 19 Wang X. ; Zhuang J. ; Peng Q. ; Li Y. D. Nature 2005, 437, 121. doi: 10.1038/nature03968 |
[5] | 20 Kang Y. S. ; Risbud S. ; Rabolt J. F. ; Stroeve P. Chem. Mater. 1996, 8, 2209. doi: 10.1021/cm960157j |
[6] | 21 Chin A. B. ; Yaacob I. I. J. Mater. Process. Tech. 2007, 191, 235. doi: 10.1016/j.jmatprotec.2007.03.011 |
[7] | 22 Deng H. ; Li X. L. ; Peng Q. ; Wang X. ; Chen J. P. ; Li Y. D., Angew. Chem. Int. Ed. 2005, 44, 2782. doi: 10.1002/ange.200462551 |
[8] | 23 Sun S. H. ; Zeng H. ; Robinson D. B. ; Raoux S. ; Rice P. M. ; Wang S. X. ; Li G. X. J. Am. Chem. Soc. 2004, 126, 273. doi: 10.1021/ja0380852 |
[9] | 28 Liu J. ; Sun Z. K. ; Deng Y. H. ; Zou Y. ; Li C. Y. ; Guo X. H. ; Xiong L. Q. ; Gao Y. ; Li F. Y. ; Zhao D. Y. Angew. Chem. Int. Ed. 2009, 121, 5875. doi: 10.1002/anie.200901566 |
[10] | 29 Zhu L. P. ; Xiao H. M. ; Zhang W. D. ; Yang G. ; Fu S. Y. Cryst. Growth Des. 2008, 8, 957. doi: 10.1021/cg700861a |
[11] | 31 Huang Z. Z. ; Wu K. L. ; Yu Q. H. ; Wang Y. Y. ; Xing J. Y. ; Xia T. L. Chem. Phys. Lett. 2016, 664, 219. doi: 10.1016/j.cplett.2016.10.036 |
[12] | 33 Matijevi? E. Chem. Mater. 1993, 5, 412. doi: 10.1021/cm00028a004 |
[13] | 34 Penn R. L. J. Phys. Chem. B 2004, 108, 12707. doi: 10.1021/jp036490+ |
[14] | 35 Jia B. P. ; Gao L. J. Phys. Chem. C 2008, 112, 666. doi: 10.1021/jp0763477 |
[15] | 36 Lou X. W. ; Wang Y. ; Yuan C. L. ; Lee J. Y. ; Archer L. A. Adv. Mater. 2006, 18, 2325. doi: 10.1002/adma.200600733 |
[16] | 24 Ge J. P. ; Hu Y. X. ; Biasini M. ; Beyermann W. P. ; Yin Y. D. Angew. Chem. Int. Ed. 2007, 46, 4342. doi: 10.1002/anie.200700197 |
[17] | 25 Reddy L. H. ; Arias J. L. ; Nicolas J. ; Couvreur P. Chem. Rev. 2012, 112, 5818. doi: 10.1021/cr300068p |
[18] | 30 Liu S. H. ; Xing R.M. ; Lu F. ; Rana R. K. ; Zhu J. J. J. Phys. Chem. C 2009, 113, 21042. doi: 10.1021/jp907296n |
[19] | 32 Libert S. ; Gorshkov V. ; Goia D. ; Matijevi? E. ; Privman V. Langmuir 2003, 19, 10679. doi: 10.1021/la0302044 |
[20] | 1 Ge J. P. ; Zhang Q. ; Zhang T. R. ; Yin Y. D. Angew. Chem. Int. Ed. 2008, 47, 8924. doi: 10.1002/anie.200803968 |
[21] | 2 Sheng W. ; Wei W. ; Li J. J. ; Qi X. L. ; Zuo G. C. ; Chen Q. ; Pan X. H. ; Dong W. Appl. Surf. Sci. 2016, 387, 1116. doi: 10.1016/j.apsusc.2016.07.061 |
[22] | 3 Yu M. ; Di Y. ; Zhang Y. ; Zhang Y. T. ; Guo J. ; Lu H. J. ; Wang C. C. Polymers 2016, 8, 74. doi: 10.3390/polym8030074 |
[23] | 4 Zhou L. M. ; Wang Y. P. ; Huang Q. W. ; Liu Z. R. Acta Phys. -Chim. Sin. 2007, 23 (12), 1979. doi: 10.3866/PKU.WHXB20071228 |
[24] | 周利民; 王一平; 黄群武; 刘峙嵘. 物理化学学报, 2007, 23 (12), 1979. doi: 10.3866/PKU.WHXB20071228 |
[25] | 7 Qiao R. R. ; Yang C. H. ; Gao M. Y. J. Mater. Chem. 2009, 19, 6274. doi: 10.1039/b902394a |
[26] | 8 Kim D. H. ; Chen J. ; Omary R. A. ; Larson A. C. Theranostics 2015, 5, 477. doi: 10.7150/thno.10823 |
[27] | 9 Ge J. P. ; Goebl J. ; He L. ; Lu Z. D. ; Yin Y. D. Adv. Mater. 2009, 21, 4259. doi: 10.1002/adma.200901562 |
[28] | 13 Hyeon T. ; Lee S. S. ; Park J. ; Chung Y. ; Na H. B. J. Am. Chem. Soc. 2001, 123, 12798. doi: 10.1021/ja016812s |
[29] | 15 Bokharaei M. ; Schneider T. ; Dutz S. ; Stone R. C. ; Mefford O. T. ; Hafeli U. O. Microfluid. Nanofluid. 2016, 20, 1. doi: 10.1007/s10404-015-1693-y |
[30] | 16 Wang X. M. ; Huang P. F. ; Ma X. M. ; Wang H. ; Lu X. Q. ; Du X. Z. Talanta 2017, 166, 300. doi: 10.1016/j.talanta.2017.01.067 |
[31] | 26 Laurent S. ; Forge D. ; Port M. ; Roch A. ; Robic C. ; Elst L. V. ; Muller R. N. Chem. Rev. 2008, 108, 2064. doi: 10.1021/cr068445e |
[32] | 27 Lu A. H. ; Salabas E. L. ; Schüth F. Angew. Chem. Int. Ed. 2007, 46, 1222. doi: 10.1002/anie.200602866 |
[33] | 5 Jain T. K. ; Morales M. A. ; Sahoo S. K. ; Leslie-Pelecky D. L. ; Labhasetwar V. Mol. Pharmacol. 2005, 2, 194. doi: 10.1021/mp0500014 |
[34] | 6 Ge J. P. ; Huynh T. ; Hu Y. X. ; Yin Y. D. Nano Lett. 2008, 8, 931. doi: 10.1021/nl080020f |
[35] | 10 Kim H. ; Ge J. P. ; Kim J. ; Choi S. ; Lee H. ; Lee H. ; Park W. ; Yin Y. D. ; Kwon S. Nat. Photonics 2009, 3, 534. doi: 10.1038/NPHOTON.2009.141 |
[36] | 11 Ge J. P. ; Hu Y. X. ; Zhang T. R. ; Yin Y. D. J. Am. Chem. Soc. 2007, 129, 8974. doi: 10.1021/ja0736461 |
[37] | 12 Sun S. H. ; Murray C. B. ; Weller D. ; Folks L. ; Moser A. Science 2000, 287, 1989. doi: 10.1126/science.287.5460.1989 |