全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201512161

Full-Text   Cite this paper   Add to My Lib

Abstract:

尿素是早已被人们认识的蛋白质变性剂,而氧化三甲胺则是最常用的蛋白质结构保护剂。虽然多年来被广泛应用在生物实验中,但是它们是如何在蛋白质结构形成中起作用,特别是氧化三甲胺是如何在高浓度尿素环境中起到抑制尿素蛋白变性作用的分子机制,至今仍然没有得到圆满解答。本文以单壁碳纳米管为模型疏水体系,采用分子动力学模拟研究尿素/氧化三甲胺混合溶液中纳米管内部水合性质,结果表明氧化三甲胺更易与水分子和尿素分子形成较强相互作用从而稳定了水溶液结构,这一结果亦表明了氧化三甲胺可以通过间接机制抵消尿素分子对于碳纳米管内部水合性质的影响。
Urea is known for protein denaturation.The counteracting effect of trimethylamine-N-oxide (TMAO) against urea-induced protein denaturation is also well established.However, what is largely unknown is the mechanism TMAO counteracts urea.In this article, the hydration of the interior of a simple single-walled carbon nanotube in a urea/TMAO mixture is studied as a model system for hydrophobic hydration using molecular dynamic simulations.The results show that TMAO counteracts the hydration effect of urea to the nanotube interior through strong interactions among TMAO, water, and urea.The strong interactions of TMAO and water stabilize the water structure, which counteracts the effects of urea indirectly

References

[1]  6 Turner J. ; Soper A. K. ; Finney J. L. Mol. Phys 1990, 70 (4), 679. doi: 10.1080/00268979000102661
[2]  11 Lin T. Y. ; Timasheff S. N. Biochemistry 1994, 33 (42), 12695. doi: 10.1021/bi00208a021
[3]  15 Venkatesu P. ; Lee M. J. ; Lin H. M. J. Phys. Chem. B 2009, 113 (15), 5327. doi: 10.1021/jp8113013
[4]  17 Robinson D. R. ; Jencks W. P. J. Am. Chem. Soc 1965, 87 (11), 2462. doi: 10.1021/ja01089a028
[5]  32 Wei, H. Y.; Fan, Y. B.; Gao, Y. Q. J. Phys. Chem. B 2010, 114 (1), 557. doi: 10.1021/jp9084926
[6]  33 Wei H. Y. ; Yang L. J. ; Gao Y. Q. J. Phys. Chem. B 2010, 114 (36), 11820. doi: 10.1021/jp103770y
[7]  36 Shao Q. ; Fan Y. B. ; Yang L. J. ; Gao Y. Q. J. Chem. Theory Comput 2012, 8 (11), 4364. doi: 10.1021/ct3002267
[8]  37 Gao Y. Q. J. Phys. Chem. B 2012, 116 (33), 9934. doi: 10.1021/jp305532h
[9]  38 Xie, W. J.; Gao, Y. Q. Faraday Discuss. 2013, 160, 191. doi: 10.1039/C2FD20065A
[10]  39 Xie W. J. ; Gao Y. Q. J. Phys. Chem. Lett 2013, 4 (24), 4247. doi: 10.1021/jz402072g
[11]  40 Hummer G. ; Rasaiah J. C. ; Noworyta J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535
[12]  41 Jorgensen W. L. ; Chandrasekhar J. ; Madura J. D. ; Impey R. W. ; Klein M. L. J. Chem. Phys 1983, 79 (2), 926. doi: 10.1063/1.445869
[13]  42 Duffy E. M. ; Kowalczyk P. J. ; Jorgensen W. L. J. Am. Chem. Soc 1993, 115 (20), 9271. doi: 10.1021/ja00073a050
[14]  43 Kast K. M. ; Brickmann J. ; Kast S. M. ; Berry R. S. J. Phys. Chem. A 2003, 107 (27), 5342. doi: 10.1021/jp027336a
[15]  44 Berendsen H. J. C. ; Postma J. P. M. ; Vangunsteren W. F. ; Dinola A. ; Haak J. R. J. Chem. Phys 1984, 81 (8), 3684. doi: 10.1063/1.448118
[16]  46 Ryckaert J. P. ; Ciccotti G. ; Berendsen H. J. C. J. Comput. Phys 1977, 23 (3), 327. doi: 10.1016/0021-9991(77)90098-5
[17]  10 Canchi D. R. ; Garcia A. E. Annual Review of Physical Chemistry 2013, 64, 273. doi: 10.1146/annurev-physchem-040412-110156
[18]  20 Das P. ; Zhou R. H. J. Phys. Chem. B 2010, 114 (16), 5427. doi: 10.1021/jp911444q
[19]  21 Zangi R. ; Zhou R. H. ; Berne B. J. J. Am. Chem. Soc 2009, 131 (4), 1535. doi: 10.1021/ja807887g
[20]  23 Finer E. G. ; Franks F. ; Tait M. J. J. Am. Chem. Soc 1972, 94 (13), 4424. doi: 10.1021/ja00768a004
[21]  24 Das A. ; Mukhopadhyay C. J. Phys. Chem. B 2009, 113 (38), 12816. doi: 10.1021/jp906350s
[22]  25 Idrissi A. ; Cinar E. ; Longelin S. ; Damay P. J. Mol. Liq 2004, 110 (1–3), 201. doi: 10.1016/j.molliq.2003.09.015
[23]  26 Frank H. S. ; Franks F. J. Chem. Phys 1968, 48 (10), 4746. doi: 10.1063/1.1668057
[24]  27 Zou Q. ; Bennion B. J. ; Daggett V. ; Murphy K. P. J. Am. Chem. Soc 2002, 124 (7), 1192. doi: 10.1021/ja004206b
[25]  28 Sarma R. ; Paul S. J. Chem. Phys 2011, 135 (17), 174501. doi: 10.1063/1.3655672
[26]  35 Shao Q. ; Gao Y. Q. J. Chem. Phys 2012, 137 (14), 145101. doi: 10.1063/1.4757419
[27]  45 Darden T. ; York D. ; Pedersen L. J. Chem. Phys 1993, 98 (12), 10089. doi: 10.1063/1.464397
[28]  48 Sarma R. ; Paul S. J. Phys. Chem. B 2013, 117 (18), 5691. doi: 10.1021/jp401750v
[29]  2 Camilloni C. ; Rocco A. G. ; Eberini I. ; Gianazza E. ; Broglia R. A. ; Tiana G. Biophys. J 2008, 94 (12), 4654. doi: 10.1529/biophysj.107.125799
[30]  5 Soper A. K. ; Finney J. L. Phys. Rev. Lett 1993, 71 (26), 4346. doi: 10.1103/PhysRevLett.71.4346
[31]  7 Bolen D. W. ; Rose G. D. Annu. Rev. Biochem 2008, 77, 339. doi: 10.1146/annurev.biochem.77.061306.131357
[32]  8 Stumpe M. C. ; Grubmuller H. J. Am. Chem. Soc 2007, 129 (51), 16126. doi: 10.1021/ja076216j
[33]  9 Stumpe, M. C.; Grubmuller, H. J. Phys. Chem. B 2007, 111 (22), 6220. doi: 10.1021/jp066474n.
[34]  12 Auton M. ; Bolen D. W. Proc. Natl. Acad. Sci. U. S. A 2005, 102 (42), 15065. doi: 10.1073/pnas.0507053102
[35]  16 Krywka C. ; Sternemann C. ; Paulus M. ; Tolan M. ; Royer C. ; Winter R. ChemPhysChem 2008, 9 (18), 2809. doi: 10.1002/cphc.200800522
[36]  19 Hua L. ; Zhou R. H. ; Thirumalai D. ; Berne B. J. Proc. Natl. Acad. Sci. U. S. A 2008, 105 (44), 16928. doi: 10.1073/pnas.0808427105
[37]  30 Sarma R. ; Paul S. J. Phys. Chem. B 2012, 116 (9), 2831. doi: 10.1021/jp2104402
[38]  31 Yang L. J. ; Gao Y. Q. J. Am. Chem. Soc 2010, 132 (2), 842. doi: 10.1021/ja9091825
[39]  47 Hummer G. Mol. Phys 2007, 105 (2–3), 201. doi: 10.1080/00268970601140784
[40]  1 Kresheck G. C. ; Scheraga H. A. J. Phys. Chem 1965, 69 (5), 1704. doi: 10.1021/j100889a043
[41]  3 Moglich A. ; Krieger F. ; Kiefhaber T. J. Mol. Biol 2005, 345 (1), 153. doi: 10.1016/j.jmb.2004.10.036
[42]  4 Das A. ; Mukhopadhyay C. J. Phys. Chem. B 2008, 112 (26), 7903. doi: 10.1021/jp800370e
[43]  13 Gluick T. C. ; Yadav S. J. Am. Chem. Soc 2003, 125 (15), 4418. doi: 10.1021/ja0292997
[44]  14 Venkatesu P. ; Lin H. M. ; Lee M. J. Thermochim. Acta 2009, 491 (1–2), 20. doi: 10.1016/j.tca.2009.02.017
[45]  18 Lim W. K. ; Rosgen J. ; Englander S. W. Proc. Natl. Acad. Sci. U. S. A 2009, 106 (8), 2595. doi: 10.1073/pnas.0812588106
[46]  22 Wetlaufer D. B. ; Coffin R. L. ; Malik S. K. ; Stoller L. J. Am. Chem. Soc 1964, 86 (3), 508. doi: 10.1021/ja01057a045
[47]  29 Koishi T. ; Yasuoka K. ; Wilow S. Y. ; Fujikawa S. ; Zeng X. C. J. Chem. Theory Comput 2013, 9 (6), 2540. doi: 10.1021/ct3010968
[48]  34 Shao Q. ; Fan Y. B. ; Yang L. J. ; Gao Y. Q. J. Chem. Phys 2012, 136 (11), 115101. doi: 10.1063/1.3692801

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133