全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201705174

Full-Text   Cite this paper   Add to My Lib

Abstract:

MXene是一种新型的二维析氢催化材料,其表面容易被亲水基团O和OH混合覆盖。我们基于第一性原理计算的方法,研究了M2XO2-2x(OH)2x(M=Ti,V;X=C,N)的析氢催化活性。计算结果显示,M2XO2-2x(OH)2x的析氢催化活性与其表面OH覆盖率(x)密切相关。对Ti2CO2-2x(OH)2x来说,OH覆盖率不超过1/3时,具有优异的析氢催化活性。对Ti2NO2-2x(OH)2x、V2CO2-2x(OH)2x和V2NO2-2x(OH)2x来说,OH覆盖率分别达到4/9、1/3和5/9时,才具有最佳的析氢催化活性。接着,电荷分析显示OH覆盖率会显著影响M2XO2-2x(OH)2x活性位点O基团的电荷量。最后,我们从态密度的角度揭示了析氢催化活性变化的原因,即活性位点O基团的氧化性随OH覆盖率的增大而被削弱。因此,本文提出了调节表面OH覆盖率来获取M2XO2-2x(OH)2x最佳析氢催化活性状态的方法,这在工业制氢生产过程中具有重要的应用价值。
MXene is a new group of electrocatalysts for two-dimensional hydrogen evolution reaction (HER). Its surfaces are often covered by hydrophilic O and OH mixed groups. To find the effect of the O and OH mixed groups on HER, we studied the HER activity for M2XO2-2x(OH)2x (M=Ti, V; X=C, N) by first-principle calculations. Results indicate that HER activity is closely related to OH-occupied coverage (x). For Ti2CO2-2x(OH)2x, excellent HER activity could be maintained when the OH-occupied coverage was not larger than 1/3. For Ti2NO2-2x(OH)2x, V2CO2-2x(OH)2x, and V2NO2-2x(OH)2x, high HER activity was obtained when OH-occupied coverage reached 4/9, 1/3, and 5/9, respectively. Next, we analyzed the charge-transfer density and found that the charges on the oxygen groups were strongly affected by the OH-occupied coverage. Finally, we revealed the variation of HER activity that oxidizability of O groups is weakened with increasing OH-occupied coverage. In this paper, we propose a new method to obtain the optimal HER activity for M2XO2-2x(OH)2x by adjusting the OH-occupied coverage of the surfaces, which is useful in industrial hydrogen production

References

[1]  7 Walter M. G. ; Warren E. L. ; McKone J. R. ; Boettcher S. W. ; Mi Q. ; Santori E. A. ; Lewis N. S. Chem. Rev. 2010, 110, 6446. doi: 10.1021/cr1002326
[2]  14 Barsoum M. W. Prog. Solid Solid State Chem. 2000, 28, 201. doi: 10.1016/S0079-6786(00)00006-6
[3]  15 Naguib M. ; Kurtoglu M. ; Presser V. ; Lu J. ; Niu J. ; Heon M. ; Hultman L. ; Gogotsi Y. ; Barsoum M. W. Adv. Mater. 2011, 23, 4248. doi: 10.1002/adma.201102306
[4]  16 Naguib M. ; Come J. ; Dyatkin B. ; Presser V. ; Taberna P.-L. ; Simon P. ; Barsoum M. W. ; Gogotsi Y. Electrochem. Commun. 2012, 16, 61. doi: 10.1016/j.elecom.2012.01.002
[5]  杨建辉; 陈言星; 吴丽慧; 韦世豪. 物理学报, 2014, 63, 237301. doi: 10.7498/aps.63.237301
[6]  19 Er D. ; Li J. ; Naguib M. ; Gogotsi Y. ; Shenoy V. B. ACS Appl. Mater. Inter. 2014, 6, 11173. doi: 10.1021/am501144q
[7]  22 Tang Q. ; Zhou Z. ; Shen P. J.Am. Chem. Soc. 2012, 134, 16909. doi: 10.1021/ja308463r
[8]  24 Guo J. ; Peng Q. ; Fu H. ; Zou G. ; Zhang Q. J.Phys. Chem. C 2015, 119, 20923. doi: 10.1021/acs.jpcc.5b05426
[9]  25 Guo X. ; Zhang X. ; Zhao S. ; Huang Q. ; Xue J. Phys. Chem. Chem. Phys. 2016, 18, 228. doi: 10.1039/c5cp06078h
[10]  30 Yang J. ; Luo X. ; Zhang S. ; Chen L. Phys. Chem. Chem. Phys. 2016, 18, 12914. doi: 10.1039/C6CP00138F
[11]  31 Yang J. ; Zhou X. ; Luo X. ; Zhang S. ; Chen L. Appl. Phys. Lett. 2016, 109, 203109. doi: 10.1063/1.4967983
[12]  32 Wang R. N. ; Zheng X. H. ; Song L. L. ; Zeng Z. J.Chem. Phys. 2011, 135, 044703. doi: 10.1063/1.3613647
[13]  36 Berdiyorov G. R. Euro Phys. Lett. 2015, 111, 67002. doi: 10.1209/0295-5075/111/67002
[14]  37 Lai S. ; Jeon J. ; Jang S. K. ; Xu J. ; Choi Y. J. ; Park J. H. ; Hwang E. ; Lee S. Nanoscale 2015, 7, 19390. doi: 10.1039/C5NR06513E
[15]  39 Yang J. H. ; Zhang S. Z. ; Ji J. L. ; Wei S. H. Acta Phys. -Chim. Sin. 2015, 31, 369. doi: 10.3866/PKU.WHXB201412121
[16]  杨建辉; 张绍政; 计嘉琳; 韦世豪. 物理化学学报, 2015, 31, 369. doi: 10.3866/PKU.WHXB201412121
[17]  42 Khazaei M. ; Arai M. ; Sasaki T. ; Chung C. Y. ; Venkataramanan N. S. ; Estili M. ; Sakka Y. ; Kawazoe Y. Adv. Funct. Mater. 2013, 23, 2185. doi: 10.1002/adfm.201202502
[18]  47 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865
[19]  1 Shafiee S. ; Topal E. Energy Policy 2009, 37, 181. doi: 10.1016/j.enpol.2008.08.016
[20]  4 Jin Z. H. ; Liu B. F. ; Liang J. H. ; Wang N. ; Zhang Q. X. ; Liu C. C. ; Zhao Y. ; Zhang X. D. Acta Phys. Sin. 2016, 65, 118801. doi: 10.7498/aps.65.118801
[21]  胡洁琼; 谢明; 陈家林; 刘满门; 陈永泰; 王松; 王塞北; 李爱坤. 物理学报, 2017, 66, 57102. doi: 10.7498/aps.66.057102
[22]  21 Xie Y. ; Naguib M. ; Mochalin V. N. ; Barsoum M. W. ; Gogotsi Y. ; Yu X. ; Nam K. W. ; Yang X. Q. ; Kolesnikov A.I. ; Kent P. R. C. J.Am. Chem. Soc. 2014, 136, 6385. doi: 10.1021/ja501520b
[23]  23 Peng Q. ; Guo J. ; Zhang Q. ; Xiang J. ; Liu B. ; Zhou A. ; Liu R. ; Tian Y. J.Am. Chem. Soc. 2014, 136, 4113. doi: 10.1021/ja500506k
[24]  27 Hu Q. ; Sun D. ; Wu Q. ; Wang H. ; Wang L. ; Liu B. ; Zhou A. ; He J. J.Phys. Chem. A 2013, 117, 14253. doi: 10.1021/jp409585v
[25]  29 Yu X. F. ; Li Y. C. ; Cheng J. B. ; Liu Z. B. ; Li Q. Z. ; Li W.Z. ; Yang X. ; Xiao B. ACS Appl. Mater. Inter. 2015, 7, 13707. doi: 10.1021/acsami.5b03737
[26]  34 Wang R. N. ; Zheng X. H. ; Lan J. ; Shi X. Q. ; Zeng Z. RSC Adv. 2014, 4, 9172. doi: 10.1039/C3RA45715J
[27]  38 Hope M. A. ; Forse A. C. ; Griffith K. J. ; Lukatskaya M. R. ; Ghidiu M. ; Gogotsi Y. ; Grey C. P. Phys. Chem. Chem. Phys. 2016, 18, 5099. doi: 10.1039/C6CP00330C
[28]  40 Seh Z. W. ; Fredrickson K. D. ; Anasori B. ; Kibsgaard J. ; Strickler A. L. ; Lukatskaya M. R. ; Gogotsi Y. ; Jaramillo T.F. ; Vojvodic A. ACS Energy Lett. 2016, 1, 589. doi: 10.1021/acsenergylett.6b00247
[29]  46 Kresse G. ; Joubert D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758
[30]  2 Chu S. ; Majumdar A. Nature 2012, 488, 294. doi: 10.1038/nature11475
[31]  3 Turner J. A. Science 2004, 305, 972. doi: 10.1126/science.1103197
[32]  晋中华; 刘伯飞; 梁俊辉; 王宁; 张奇星; 刘彩池; 赵颖; 张晓丹. 物理学报, 2016, 65, 118801. doi: 10.7498/aps.65.118801
[33]  5 Yang J. ; Zhang Q. ; Chen L. ; Wang G. ; Chen X. Adv. Sci. 2016, 3, 1500314. doi: 10.1002/advs.201500314
[34]  6 Hinnemann B. ; Moses P. G. ; Bonde J. ; J?rgensen K. P. ; Nielsen J.H. ; Horch S. ; Chorkendorff I. ; N?rskov J. K. J.Am. Chem. Soc. 2005, 127, 5308. doi: 10.1021/ja0504690
[35]  8 Liu T. ; Ma X. ; Liu D. ; Hao S. ; Du G. ; Ma Y. ; Asiri A. M. ; Sun X. ; Chen L. ACS Catal. 2017, 7, 98. doi: 10.1021/acscatal.6b02849
[36]  9 Tang C. ; Gan L. ; Zhang R. ; Lu W. ; Jiang X. ; Asiri A. M. ; Sun X. ; Wang J. ; Chen L. Nano Lett. 2016, 16, 6617. doi: 10.1021/acs.nanolett.6b03332
[37]  10 Chung D. Y. ; Park S. K. ; Chung Y. H. ; Yu S. H. ; Lim D.H. ; Jung N. ; Ham H. C. ; Park H. Y. ; Piao Y. ; Yoo S. J. ; Sung Y. E. Nanoscale 2014, 6, 2131. doi: 10.1039/C3NR05228A
[38]  13 Tang H. ; Dou K. ; Kaun C. C. ; Kuang Q. ; Yang S. J.Mater. Chem. A 2014, 2, 360. doi: 10.1039/C3TA13584E
[39]  17 Yang J. H. ; Chen Y. X. ; Wu L. H. ; Wei S. H. Acta Phys. Sin. 2014, 63, 237301. doi: 10.7498/aps.63.237301
[40]  18 Hu J. Q. ; Xie M. ; Chen J. L. ; Liu M. M. ; Chen Y. T. ; Wang S. ; Wang S. B. ; Li A. K. Acta Phys. Sin. 2017, 66, 57102. doi: 10.7498/aps.66.057102
[41]  20 Lukatskaya M. R. ; Mashtalir O. ; Ren C. E. ; Dall'Agnese Y. ; Rozier P. ; Taberna P. L. ; Naguib M. ; Simon P. ; Barsoum M.W. ; Gogotsi Y. Science 2013, 341, 1502. doi: 10.1126/science.1241488
[42]  51 Greeley J. ; Jaramillo T. F. ; Bonde J. ; Chorkendorff I. ; Norskov J. K. Nat. Mater. 2006, 5, 909. doi: 10.1038/nmat1752
[43]  11 Wu Z. ; Fang B. ; Wang Z. ; Wang C. ; Liu Z. ; Liu F. ; Wang W. ; Alfantazi A. ; Wang D. ; Wilkinson D. P. ACS Catal. 2013, 3, 2101. doi: 10.1021/cs400384h
[44]  12 Chen X. ; Gu Y. ; Tao G. ; Pei Y. ; Wang G. ; Cui N. J.Mater. Chem. A 2015, 3, 18898. doi: 10.1039/C5TA02817E
[45]  26 Guo J. ; Fu H. ; Zou G. ; Zhang Q. ; Zhang Z. ; Peng Q. J.Alloy. Compd. 2016, 684, 504. doi: 10.1016/j.jallcom.2016.05.217
[46]  28 Chen J. ; Chen K. ; Tong D. ; Huang Y. ; Zhang J. ; Xue J. ; Huang Q. ; Chen T. Chem. Commun. 2015, 51, 314. doi: 10.1039/c4cc07220k
[47]  33 Wang R. N. ; Zheng X. H. ; Dai Z. X. ; Hao H. ; Song L. L. ; Zeng Z. Phys. Lett. A 2011, 375, 657. doi: 10.1016/j.physleta.2010.11.031
[48]  35 Zhang H. W. ; Duan G. T. ; Liu G. Q. ; Li Y. ; Xu X. X. ; Dai Z. F. ; Wang J. J. ; Cai W. P. Nanoscale 2013, 5, 2460. doi: 10.1039/C3NR33378G
[49]  41 Ling C. ; Shi L. ; Ouyang Y. ; Chen Q. ; Wang J. Adv. Sci. 2016, 3, 1600180. doi: 10.1002/advs.201600180
[50]  43 Kresse G. ; Furthmüller J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169
[51]  44 Kresse G. ; Furthmüller J. Comp. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0
[52]  45 Bl?chl P. E. Phys. Rev. B 1994, 50, 17953. doi: 10.1103/PhysRevB.50.17953
[53]  48 Monkhorst H. J. ; Pack J. D. Phys. Rev. B 1976, 13, 5188. doi: 10.1103/PhysRevB.13.5188
[54]  49 Parsons R. Trans. Faraday Soc. 1958, 54, 1053. doi: 10.1039/TF9585401053
[55]  50 Greeley J ; Stephens I. E. L. ; Bondarenko A. S. ; Johansson T.P. ; Hansen H. A. ; Jaramillo T. F. ; Rossmeisl J ; Chorkendorff I ; N?rskov J. K. Nat. Chem. 2009, 1, 552. doi: 10.1038/nchem.367

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133