采用静电纺丝的方法制备了SnO2纳米纤维,并分别用PdO、Au、CdO对该纳米纤维材料进行表面修饰.用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱(EDX)、X射线光电子能谱(XPS)分析、Brunauer-Emmett-Teller (BET)比表面积测试对材料进行表征.修饰前后, SnO2纳米纤维都是由约15 nm的纳米颗粒构成的直径约为200 nm的多级结构材料.采用静态测试系统对纯SnO2及不同物质修饰的SnO2的气敏特性进行测试,结果表明,未修饰的SnO2纳米纤维气敏元件对甲醛具有较好的响应.修饰后的SnO2材料的气敏特性都有明显的改善. CdO修饰的SnO2气敏元件对甲醛的响应值最高,且响应恢复时间短,选择性好. Au修饰的SnO2气敏元件对甲醛响应的最佳工作温度从300 ℃降到了200 ℃.经PdO修饰后, SnO2纳米纤维对甲苯的响应值变得最高.初步分析了经过修饰的SnO2气敏材料的敏感机理. SnO2 nanofibers fabricated by electrospinning were coated with PdO, Au, and CdO. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDX), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) tests were used to characterize the nanofibers. The diameters of bare and coated SnO2 nanofibers were approximately 200 nm, and had 15-nm diameter grains. The gas-sensing properties of all the nanofibers were characterized under static gas conditions. The results indicated that the bare SnO2 nanofibers were sensitive to formaldehyde; however the sensitivity of the coated nanofibers was better. In particular, the CdO-coated SnO2 exhibited the highest sensitivity to formaldehyde, the shortest response and recovery times, and good selectivity. The operating temperature of the Au-coated SnO2 decreased from 300 to 200 ℃, while the PdO-coated SnO2 exhibited the highest sensitivity to toluene. The sensing mechanism of the coated SnO2 nanofibers was investigated
References
[1]
27 Kolmakov A. ; Klenov D. O. ; Lilach Y. ; Stemmer S. ; Moskovits M. Nano Letters 2005, 5, 667. doi: 10.1021/nl050082v
[2]
22 Wang B. ; Zheng Z. Q. ; Zhu L. F. ; Yang Y. H. ; Wu H. Y. Sens. Actuator B-Chem 2014, 195, 549. doi: 10.1016/j.snb.2014.01.073
[3]
23 Zheng W. ; Lu X. ; Wang W. ; Li Z. ; Zhang H. ; Wang Z. ; Xu X. ; Li S. ; Wang C. J. Colloid Interface Sci 2009, 338, 366. doi: 10.1016/j.jcis.2009.06.041
[4]
24 Sun L. ; Li J. ; Wang C. ; Li S. ; Lai Y. ; Chen H. ; Lin C. J. Hazard. Mater 2009, 171, 1045. doi: 10.1016/j.jhazmat.2009.06.115
[5]
2 Sun P. ; Zhou X. ; Wang C. ; Wang B. ; Xu X. ; Lu G. Sens. Actuator B-Chem 2014, 190, 32. doi: 10.1016/j.snb.2013.08.045
[6]
9 Guan Y. ; Wang D. ; Zhou X. ; Sun P. ; Wang H. ; Ma J. ; Lu G. Sens. Actuator B-Chem 2014, 191, 45. doi: 10.1016/j.snb.2013.09.002
[7]
10 Zheng Y. ; Wang J. ; Yao P. Sens. Actuator B-Chem 2011, 156, 723. doi: 10.1016/j.snb.2011.02.026
[8]
11 Zhang F. H. ; Wang X. H. ; Dong J. P. ; Qin N. ; Xu J. Q. Sens. Actuator B-Chem 2013, 186, 126. doi: 10.1016/j.snb.2013.05.086
[9]
12 Hwang I. S. ; Choi J. K. ; Woo H. S. ; Kim S. J. ; Jung S. ; Seong T. Y. ; Kim I. D. ; Lee J. H. ACS Appl. Mater. Inter 2011, 3, 3140. doi: 10.1021/am200647f
[10]
17 Jain G. H. ; Patil L. A. ; Wagh M. S. ; Patil D. R. ; Patil S. A. ; Amalnerkar D. P. Sens. Actuator B-Chem 2006, 117, 159. doi: 10.1016/j.snb.2005.11.031
[11]
18 He J. Q. ; Yin J. ; Liu D. ; Zhang L. X. ; Cai F. S. ; Bie L. J. Sens. Actuator B-Chem 2013, 182, 170. doi: 10.1016/j.snb.2013.02.085
[12]
19 Cao H. Q. ; Zhu M. F. ; Li Y. G. J. Solid State Chem 2006, 179, 1208. doi: 10.1016/j.jssc.2005.12.040
[13]
20 Vuong N. M. ; Hieu N. M. ; Hieu H.. ; Yi H. ; Kim D. ; Han Y. S. ; Kim M. Sens. Actuator B-Chem 2014, 192, 327. doi: 10.1016/j.snb.2013.10.117
[14]
1 Xu J. Q. ; Jia X. H. ; Lou X. D. ; Xi G. X. ; Han J. J. ; Gao Q. H. Sens. Actuator B-Chem 2007, 120, 694. doi: 10.1016/j.snb.2006.03.033
[15]
3 Katoch A. ; Byun J. H. ; Choi S. W. ; Kim S. S. Sens. Actuator B-Chem 2014, 202, 38.
[16]
4 Khoang N. D. ; Trung D. D. ; Van D. N. ; Hoa N. D. ; Van H. N. Sens. Actuator B-Chem 2012, 174, 594. doi: 10.1016/j.snb.2012.07.118
[17]
5 Lin Q. ; Li Y. ; Yang M. Sens. Actuator B-Chem 2012, 173, 139. doi: 10.1016/j.snb.2012.06.055
[18]
6 Sun P. ; Wang C. ; Zhou X. ; Cheng P. ; Shimanoe K. ; Lu G. ; Yamazoe N. Sens. Actuator B-Chem 2014, 193, 616. doi: 10.1016/j.snb.2013.12.015
[19]
7 Mohanapriya P. ; Segawa H. ; Watanabe K. ; Watanabe K. ; Samitsu S. ; Natarajan T. S. ; Jaya N. V. ; Ohashi N. Sens. Actuator B-Chem 2013, 188, 872. doi: 10.1016/j.snb.2013.07.016
[20]
8 Kaur J. ; Vankar V. D. ; Bhatnagar M. C. Thin Solid Films 2010, 518, 3982. doi: 10.1016/j.tsf.2009.11.016
[21]
13 Zheng K. B. ; Li J. L. ; Shen H. T. ; Sun D. L. ; Chen G. R. Acta Phys. -Chim. Sin 2008, 24, 1080. doi: 10.3866/PKU.WHXB20080629
15 Zhao M. ; Wang J. X. ; Feng C. H. ; Zou B. ; Chen C. ; Wang Z. Y. ; Wu F. Q. ; Zou L. H. Acta Phys. -Chim. Sin 2007, 23, 1003. doi: 10.3866/PKU.WHXB20070708