全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201711131

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,深共熔溶剂热作为一种绿色合成方法被广泛用于多种杂化功能材料的合成。在本研究中,这一合成方法被引入到多核Zr-和Zr/Ti-O纳米团簇的制备,成功获得被邻菲罗啉、苯酚等共轭配体修饰的Zr6以及Ti11Zr4团簇。此方法将为具有精准结构信息的被较多发色团包覆的纳米团簇的合成开辟新的技术路线。此外,光催化分解水产氢实验结果表明,由于具有不同的簇核环境,这两种纳米团簇表现出不同的分散性及与之相关的产氢活性。因此,该研究也为探索金属氧簇材料的结构–性能关系以及结构设计原则提供了借鉴。
Atomically precise nanoclusters form an important class of functional materials that have recently attracted research interest for their unique properties and easily tunable surface functionalities. Core-shell nanomaterials with precise structural information can be produced to better understand the structure–property relationships for different applications. Polyoxo-titanium clusters (PTCs) are such a kind of nanomaterial for different functional applications in catalysis, photovoltaics, ceramics, etc. However, the high bandgap of semiconductive PTCs is the limiting factor in their practical solar application in the visible region of sunlight. The development of PTCs with different surface-bound ligands is an emerging area of research in the design and synthesis of core-shell nanoclusters with reduced bandgaps. It has been extensively reported that the polynuclear growth of PTCs requires molecular-level water supply in reactions. Moreover, it is important to identify more environment-friendly synthetic methods. Deep eutectic-solvothermal (DES) synthesis is an emerging green method for the synthesis of different crystalline materials. The hygroscopic nature of DES should enhance the provision of water during polynuclear growth of nanoclusters. Hence, we chose to synthesize different kinds of PTCs using DES as solvent. Two nanoclusters, Zr-oxo (PTC-65) and Zr/Ti-oxo (PTC-66) clusters having surface-bound 1, 10-phenanthroline (1, 10-phn) and phenol ligands, were successfully synthesized using this approach; 1, 10-phn was employed as the precursor in the synthetic reaction, and phenol was not employed directly in the chemical reaction, but was supplied from the DES solvent used in the reaction. In the presence of chromophoric ligands, 1, 10-phn and phenol are believed to enhance the light absorption properties of the resulting functional nanomaterials. Their crystal structure revealed that they form core-shell mimics with Zr-oxo and Ti/Zr-oxo core units having surface-bound shell ligands. Based on their different structural characteristics, photocatalytic hydrogen evolution studies were performed on these two functional materials using an aqueous solution of H2O (50 mL)/triethanol amine (10 mL). Interestingly, PTC-65 formed a turbid solution, whereas PTC-66 formed a clear solution. The possible reasons for their

References

[1]  5 Fang J. ; Zhang B. ; Yao Q. ; Yang Y. ; Xie J. ; Yan N. Coord. Chem. Rev. 2016, 322, 1. doi: 10.1016/j.ccr.2016.05.003
[2]  7 Sun G. D. ; Kang X. ; Jin S. ; Li X. W. ; Hu D. Q. ; Wang S. X. ; Zhu M. Z. Acta Phys. -Chim. Sin. 2018, 34 (7), 799. doi: 10.3866/PKU.WHXB201710124
[3]  8 Chaudhuri R. G. ; Paria S. Chem. Rev. 2012, 112, 2373. doi: 10.1021/cr100449n
[4]  10 Tominaga C. ; Hikosou D. ; Osaka I. ; Kawasak H. Acta Phys. -Chim. Sin. 2018, 34 (7), 805. doi: 10.3866/PKU.WHXB201710271
[5]  17 Lv Y. ; Cheng J. ; Steiner A. ; Gan L. ; Wright D. S. Angew. Chem. Int. Ed. 2014, 53, 1934. doi: 10.1002/anie.201307721
[6]  21 Zhang Q. ; Vigier K. D. O. ; Royer S. ; Jerome F. Chem. Soc. Rev. 2012, 41, 7108. doi: 10.1039/C2CS35178A
[7]  23 Zhang J. ; Wu T. ; Chen S. ; Feng P. ; Bu X. Angew. Chem. Int. Ed. 2009, 48, 3486. doi: 10.1002/anie.200900134
[8]  25 Nagaraju N. ; Fang W. H. ; Kalpana C. ; Zhang L. ; Zhang J. Chem. Commun. 2017, 53, 8078. doi: 10.1039/c7cc04388k
[9]  24 Wragg D. S. ; Slawin A. M. Z. ; Morris R. E. Solid State Sci. 2009, 11, 411. doi: 10.1016/j.solidstatesciences.2008.09.008
[10]  26 Sheldrick G. M. Acta Crystallogr. Sect. A 2008, 64, 112. doi: 10.1107/S0108767307043930
[11]  27 Sheldrick SHELXL-2014 G. M. University of Gottingen, Germany, 2014.
[12]  29 Gao M. Y. ; Wang F. ; Gu Z. G. ; Zhang D. X. ; Zhang L. ; Zhang Z. J. Am. Chem. Soc. 2016, 138, 2556. doi: 10.1021/jacs.6b00613
[13]  1 Indranath C. ; Thalappil P. Chem. Rev. 2017, 117, 8208. doi: 10.1021/acs.chemrev.6b00769
[14]  2 Goswami N. ; Zheng K. ; Xie J. Nanoscale 2014, 6, 13328. doi: 10.1039/C4NR04561K
[15]  3 Yuan X. ; Luo Z. ; Yu Y. ; Yao Q. ; Xie J. Chem. Asian J. 2013, 8, 858. doi: 10.1002/asia.201201236
[16]  4 Zhou Y. ; Li Z. M. ; Zheng K. ; Li G. Acta Phys. -Chim. Sin. 2018, 34 (7), 786. doi: 10.3866/PKU.WHXB201709292
[17]  周洋; 李志敏; 郑凯; 李杲. 物理化学学报, 2018, 34 (7), 786. doi: 10.3866/PKU.WHXB201709292
[18]  6 Zhu M. ; Li M. B. ; Yao C. H. ; Xia N. ; Zhao Y. ; Yan N. ; Liao L. W. ; Wu Z. K. Acta Phys. -Chim. Sin. 2018, 34 (7), 792. doi: 10.3866/PKU.WHXB201710091
[19]  祝敏; 李漫波; 姚传好; 夏楠; 赵燕; 闫楠; 廖玲文; 伍志鲲. 物理化学学报, 2018, 34 (7), 792. doi: 10.3866/PKU.WHXB201710091
[20]  9 Xiao P. W. ; Zhao L ; Sui Z. Y. ; Han B. H. Langmuir 2017, 33, 6038. doi: 10.1021/acs.langmuir.7b00331
[21]  11 Li N. ; Matthews P. D. ; Luob H. K. ; Wright D. S. Chem. Commun. 2016, 52, 11180. doi: 10.1039/C6CC03788G
[22]  12 Snoeberger R. C. Ⅲ ; Young K. J. ; Tang J. ; Allen L. J. ; Crabtree R. H. ; Brudvig G. W. ; Coppens P. ; Batista V. S. ; Benedict J. B. J. Am. Chem. Soc. 2012, 134, 8911. doi: 10.1021/ja301238t
[23]  13 Fang W. H. ; Wang J. F. ; Zhang L. ; Zhang J. Chem. Mater. 2017, 29, 2681. doi: 10.1021/acs.chemmater.7b00324
[24]  14 Zhao Z. ; Zhang X. Y. ; Zhang G. Q. ; Liu Z. Y. ; Qu D. ; Miao X. ; Feng P. Y. ; Sun Z. C. Nano Res. 2015, 8, 4061. doi: 10.1007/s12274-015-0917-5
[25]  孙国栋; 康熙; 金山; 李小武; 胡大乔; 汪恕欣; 朱满洲. 物理化学学报, 2018, 34 (7), 799. doi: 10.3866/PKU.WHXB201710124
[26]  15 Coppens P. ; Chen Y. ; Trzop E. Chem. Rev. 2014, 114, 9645. doi: 10.1021/cr400724e
[27]  16 Liu J. X. ; Gao M. Y. ; Fang W. H. ; Zhang L. ; Zhang J. Angew. Chem. Int. Ed. 2016, 55, 5160. doi: 10.1002/anie.201510455
[28]  18 Sokolow J. D. ; Trzop E. ; Chen Y. ; Tang J. ; Allen L. J. ; Crabtree R. H. ; Benedict J. B. ; Coppens. P. J. Am. Chem. Soc. 2012, 134, 11695. doi: 10.1021/ja303692r
[29]  19 Wagle D. V. ; Zhao H. ; Baker G. A. Acc. Chem. Res. 2014, 7, 2299. doi: 10.1021/ar5000488
[30]  20 Cooper E. R. ; Andrews C. D. ; Wheatley P. S. ; Webb P. B. ; Wormald P. ; Morris R. E. Nature 2004, 430, 1012. doi: 10.1038/nature02860
[31]  22 Smith E. L. ; Abbott A. P. ; Ryder K. S. Chem. Rev. 2014, 114, 11060. doi: 10.1021/cr300162p
[32]  28 Kickelbick G. ; Wiede P. ; Schubert U. Inorg. Chim. Acta 1999, 284, 1. doi: 10.1016/S0020-1693(98)00251-5
[33]  30 Zhang G. ; Liu C. ; Long D. L. ; Cronin L. ; Tung C. H. ; Wang Y. J. Am. Chem. Soc. 2016, 138, 11097. doi: 10.1021/jacs.6b06290

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133