制备了吡啶类离子液体N-己基吡啶二氰胺盐[C6py][DCA],并用核磁共振氢谱([1]H NMR)、核磁共振碳谱([13]C NMR)、差热扫描量热(DSC)、傅里叶变换红外(FT-IR)光谱对其进行表征。在288.15-338.15 K温度范围内,采用标准加入法,测定其密度(ρ)、表面张力(γ)和折光率(nD)。在测得的实验数据的基础上,得到了离子液体[C6py][DCA]的分子体积(Vm)、表面能(Ea)、摩尔极化度(Rm)和极化率(αp)。结果显示Ea、Rm和αp几乎不随温度的变化而发生改变。本文还提出了摩尔表面Gibbs自由能(gs)的概念,并改进了E?tv?s方程。同时还计算了gs、临界温度(Tc)和E?tv?s方程经验参数(kE),并预测了离子液体[C6py][DCA]的表面张力,预测值与实验值具有较好的一致性。 The pyridinium-based ionic liquids [C6py][DCA] (N-hexyl-pyridinium dicyanamide) was prepared and characterized using [1]H and [13]C nuclear magnetic responancec (NMR) spectroscopies, Fourier transform infrared (FT-IR) spectroscopy, and differential scanning calorimetry (DSC). The density (ρ), surface tension (γ), and refractive indices (nD) were measured at the temperature range from 288.15 to 338.15 K. Molecular volume (Vm), energy of surface (Ea), molar polarization (Rm), and polarization coefficient of [C6py][DCA] (αp) were calculated from the experimental data. Ea, Rm, and αp were approximately temperature-independent. The concept of molar surface Gibbs free energy (gs) was conceived, for which a new E?tv?s equation was derived. The gs, critical temperature (Tc), and E?tv?s empirical parameter related to polarity (kE) were also obtained. The new E?tv?s equation was used to predict the surface tension and the predicted values of [C6py][DCA] are in close agreement with the corresponding experimental ones
References
[1]
3 Muhammad N. ; Omar W. N. ; Man Z. ; Bustam M. A. ; Rafiq S. ; Uemura Y. Ind. Eng. Chem. Res 2012, 51 (5), 2280. doi: 10.1021/ie2014313
[2]
4 Rout A. ; Binnemans K. Ind. Eng. Chem. Res 2014, 53 (8), 6500.
[3]
5 Zhong H. X. ; Zhao C. B. ; Luo H. ; Zhang L. Z. Acta Phys. -Chim. Sin 2012, 28 (11), 2641. doi: 10.3866/PKU.WHXB201207181
7 Zhao D. B. ; Fei Z. F. ; Geldbach T. J. ; Scopelliti R. ; Dyson P. J. J. Am. Chem. Soc 2004, 126 (48), 15876. doi: 10.1021/ja0463482
[8]
9 Calvar, N.; Gomez, E.; Macedo, E. A.; Dominguez, A. Thermochimica Acta 2013, 565, 178. doi: 10.1016/j.tca.2013.05.007
[9]
12 Ye Q. ; Gao T. T. ; Wan F. ; Yu B. ; Pei X. M. ; Zhou F. ; Xue Q. J. Journal of Materials Chemistry 2012, 22 (26), 13123. doi: 10.1039/c2jm31527k
[10]
15 Schneider S. ; Hawkins T. ; Rosander M. ; Vaghjiani G. ; Chambreau S. ; Drake G. Energy & Fuels 2008, 22 (4), 2871. doi: 10.1021/ef800286b
[11]
16 Bedrov D. ; Borodin O. Journal of Physical Chemistry B 2010, 114 (40), 12802. doi: 10.1021/jp1049827
[12]
8 Yunus N. M. ; Abdul Mutalib M. I. ; Man Z. ; Bustam M. A. ; Murugesan T. Chemical Engineering Journal 2012, 189, 94.
[13]
10 Crosthwaite J. M. ; Muldoon M. J. ; Dixon J. K. ; Anderson J. L. ; Brennecke J. F. Journal of Chemical Thermodynamics 2005, 37 (6), 559. doi: 10.1016/j.jct.2005.03.013
[14]
11 Xu F. ; Gao H. S. ; Dong H. F. ; Wang Z. L. ; Zhang X. P. ; Ren B. Z. ; Zhang S. J. Fluid Phase Equilibria 2014, 365, 80. doi: 10.1016/j.fluid.2013.12.020
[15]
18 Krossing I. ; Slattery J. M. ; Daguenet C. ; Dyson P. J. ; Oleinikova A. ; Weing?rtner H. J. Am. Chem. Soc 2006, 128 (41), 13427.
[16]
19 Jenkins H. D. B. ; Glasser L. Inorganic Chemistry 2002, 41 (17), 4378. doi: 10.1021/ic020222t
[17]
20 Jenkins H. D. B. ; Glasser L. Inorganic Chemistry 2003, 42 (26), 8702. doi: 10.1021/ic030219p
[18]
21 Ma X. X. ; Wei J. ; Zhang Q. B. ; Tian F. ; Feng Y. Y. ; Guan W. Ind. Eng. Chem. Res 2013, 52, 9490. doi: 10.1021/ie401130d
[19]
22 Wei J. ; Chang C. ; Zhang Y. Y. ; Hou S. Y. ; Fang D. W. ; Guan W. J. Chem. Thermodynamics 2015, 90, 310.
[20]
23 Wei J. ; Zhang Q. B. ; Tian F. ; Zheng L. ; Guan W. ; Yang J.Z. Fluid Phase Equilibria 2014, 371, 1. doi: 10.1016/j.fluid.2014.03.011
[21]
关伟; 王彩霞; 王珍; 陈三平; 高胜利. 化学学报, 2011, 69 (11), 1280.
[22]
27 Earle M. J. ; Gordon C. M. ; Plechkova N. V. ; Seddon K. R. ; Welton T. Analytical Chemistry 2007, 79 (2), 758. doi: 10.1021/ac061481t
[23]
28 Gordon, C. M.; Muldoon, M. J.; Wagner, M. Ionic Liquids in Synthesis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2002.
32 Adamson, A. W. Physical Chemistry of Surfaces, 3rd ed.; John Wiley: New York, 1976; translated by Gu, T. R. Science Press: Beijing, 1986. Adamson, A. W.
[26]
表面物理化学.第三版.顾惕人译.北京:科学出版社, 1986.
[27]
2 Tao G. H. ; He L. ; Liu W. S. ; Xu L. ; Xiong W. ; Wang T. ; Kou Y. Green Chem 2006, 8, 639. doi: 10.1039/b600813e
[28]
13 Zeng S. J. ; Gao H. S. ; Zhang X. C. ; Dong H. F. ; Zhang X. P. ; Zhang S. J. Chemical Engineering Journal 2014, 251, 248. doi: 10.1016/j.cej.2014.04.040
[29]
14 Jie X. M. ; Chau J. ; Obuskovic G. ; Obuskovic G. ; Sirkar K. K. Industrial & Engineering Chemistry Research 2014, 53 (8), 3305. doi: 10.1021/ie403596b
[30]
25 Ma X. X. ; Wei J. ; Guan W. ; Pan Y. ; Zheng L. ; Wu Y. ; Yang J. Z. J. Chem. Thermodynamics 2015, 89, 51. doi: 10.1016/j.jct.2015.02.025
[31]
26 Guan W. ; Wang C. X. ; Wang Z. ; Chen S. P. ; Gao S. L. Acta Chim. Sin 2011, 69 (11), 1280.
[32]
29 Zhang S. G. ; Qi X. J. ; Ma X. Y. ; Lu L. J. ; Deng Y. Q. J. Phys. Chem. B 2010, 114 (11), 3912. doi: 10.1021/jp911430t
[33]
30 Lide, D. R. Handbook of Chemistry and Physics, 82nd ed.; CRC Press: Boca Raton, FL, 2001.
[34]
34 Tong J. ; Liu Q. S. ; Zhang P. ; Yang J. Z. J. Chem. Eng. Data 2007, 52 (4), 1497. doi: 10.1021/je700102g
[35]
1 Seddon K. R. J. Chem. Tech. Biotechnol 1997, 68 (4), 351.
[36]
17 Tokuda H. ; Hayamizu K. ; Ishii K. ; Susan M. A. B. H. ; Watanabe M. Journal of Physical Chemistry B 2004, 108 (42), 16593. doi: 10.1021/jp047480r
[37]
24 Guan W. ; Zhang Q. B. ; Ma X. X. ; Wei J. ; Pan Y. ; Yang J. Z. Fluid Phase Equilibria 2013, 360, 63. doi: 10.1016/j.fluid.2013.09.032
[38]
33 Ersfeld B. ; Felderhof B. U. Phys. Rev. E 1998, 57 (1), 1118. doi: 10.1103/PhysRevE.57.1118