全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201508102

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯是一种碳原子以二维蜂窝状晶格结构构成的单片层材料,由于其具有优异的电传导性、力学性能和热传导性近年来受到广泛关注.本文采用γ射线辐射技术分别处理水溶液和对苯二胺(PPD)水溶液中的氧化石墨烯(GO),得到辐照还原氧化石墨烯(RGO)和胺基化修饰的还原氧化石墨烯(RGON).通过傅里叶变换红外(FTIR)光谱、X射线光电子能谱(XPS)、拉曼(Raman)光谱、X射线衍射(XRD)和热失重分析(TGA)等表征分析产物的化学结构和元素组成;通过四探针测试仪和接触角测量仪研究产物的导电性能和亲水性.实验结果表明,在水溶液及PPD水溶液中γ射线辐射均可高效还原GO,还原后得到的RGO和RGON电导率均显著增大.PPD的胺基在辐射还原过程中还可以修饰到石墨烯的表面,因此RGON的亲水性比RGO好,但胺基的存在会干扰石墨烯表面π电子的传导,导致其电导率下降.
Graphene, a one-atom-thick, two-dimensional (2D) sheet of carbon packed in a honeycomb lattice, has striking electronic, mechanical, and thermal properties. Reduced graphene oxide (RGO) and amine-modified reduced graphene oxide (RGON) were obtained by γ-ray induced reduction of a graphene oxide (GO) suspension in purified water and in a p-phenylene diamine (PPD) aqueous solution, respectively. The structures and elemental compositions of GO, RGO, and RGON were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, the electrical conductivities and hydrophilic properties were conducted with four-probe resistivity meter and contact angle measurements, respectively. The results reveal that GO can be well reduced by γ-ray irradiation in either purified water or PPD aqueous solution. Furthermore, the electrical conductivities of obtained RGO and RGON are enhanced. The hydrophilicity of RGON is higher than that of RGO because the amine groups of PPD are modified on the surface of graphene nanosheets during the γ-ray induced reduction. However, the conduction of electron on the surface of graphene can be inhibited by the modified amine groups. Therefore, the electrical conductivity of RGO is higher than that of RGON

References

[1]  米传同; 刘国平; 王家佳; 郭新立; 吴三械; 于金. 物理化学学报, 2014, 30, 1230. doi: 10.3866/PKU.WHXB201405201
[2]  6 Wu H. ; Drzal L. T. Carbon 2012, 50 (3), 1135. doi: 10.1016/j.carbon.2011.10.026
[3]  22 Liu J. ; Jin J. M. Ieee Transactions on Antennas and Propagation 2003, 51 (6), 1157. doi: 10.1109/TAP.2003.812280
[4]  23 Chen C. M. ; Zhang Q. ; Yang M. G. ; Huang C. H. ; Yang Y. G. ; Wang M. Z. Carbon 2012, 50 (10), 3572. doi: 10.1016/j.carbon.2012.03.029
[5]  24 Chen C. M. ; Zhang Q. ; Zhao X. C. ; Zhang B. S. ; Kong Q. Q. ; Yang M. G. ; Yang Q. H. ; Wang M. Z. ; Yang Y. G. ; Schlogl R. ; Su D. S. Journal of Materials Chemistry 2012, 22 (28), 14076. doi: 10.1039/c2jm31426f
[6]  25 Chen X. Q. ; Xu Z. H. ; Li X. D. ; Shaibat M. A. ; Ishii Y. ; Ruoff R. S. Carbon 2007, 45 (2), 416. doi: 10.1016/j.carbon.2006.08.025
[7]  5 Mi C. T. ; Liu G. P. ; Wang J. J. ; Guo X. L. ; Wu S. X. ; Yu J. Acta Phys. -Chim. Sin 2014, 30, 1230. doi: 10.3866/PKU.WHXB201405201
[8]  10 Stankovich S. ; Dikin D. A. ; Piner R. D. ; Kohlhaas K. A. ; Kleinhammes A. ; Jia Y. ; Wu Y. ; Nguyen S. T. ; Ruoff R. S. Carbon 2007, 45 (7), 1558. doi: 10.1016/j.carbon.2007.02.034
[9]  11 Si Y. ; Samulski E. T. Nano Letters 2008, 8 (6), 1679. doi: 10.1021/nl080604h
[10]  1 Yin P. T. ; Shah S. ; Chhowalla M. ; Lee K. B. Chemical Reviews 2015, 115 (7), 2483. doi: 10.1021/cr500537t
[11]  2 Zhang Q. Q. ; Li R. ; Zhang M. M. ; Gou X. L. Acta Phys. -Chim. Sin 2014, 30, 476. doi: 10.3866/PKU.WHXB201401071
[12]  张晴晴; 李容; 张萌萌; 苟兴龙. 物理化学学报, 2014, 30, 476. doi: 10.3866/PKU.WHXB201401071
[13]  3 Yang Y. W. ; Feng G. ; Lu Z. H. ; Hu N. ; Zhang F. ; Chen X. S. Acta Phys. -Chim. Sin 2014, 30, 1180. doi: 10.3866/PKU.WHXB201404141
[14]  7 Georgakilas V. ; Perman J. A. ; Tucek J. ; Zboril R. Chemical Reviews 2015, 115 (11), 4744. doi: 10.1021/cr500304f
[15]  8 Wang C. F. ; Chen Y. J. ; Zhuo K. L. ; Wang J. J. Chemical Communications 2013, 49 (32), 3336. doi: 10.1039/c3cc40507a
[16]  12 Wang G. ; Yang J. ; Park J. ; Gou X. ; Wang B. ; Liu H. ; Yao J. Journal of Physical Chemistry C 2008, 112 (22), 8192. doi: 10.1021/jp710931h
[17]  13 Tang X. Z. ; Cao Z. W. ; Zhang H. B. ; Liu J. ; Yu Z. Z. Chemical Communications 2011, 47 (11), 3084. doi: 10.1039/c0cc05613h
[18]  14 Nguyen S. T. ; Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K. M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Ruoff R. S. Nature 2006, 442 (7100), 282. doi: 10.1038/nature04969
[19]  15 Fan X. B. ; Peng W. C. ; Li Y. ; Li X. Y. ; Wang S. L. ; Zhang G. L. ; Zhang F. B. Advanced Materials 2008, 20 (23), 4490. doi: 10.1002/adma.v20:23
[20]  16 Zhang J. L. ; Yang H. J. ; Shen G. X. ; Cheng P. ; Zhang J. Y. ; Guo S. W. Chemical Communications 2010, 46 (7), 1112. doi: 10.1039/B917705A
[21]  17 Zhou D. ; Cheng Q. Y. ; Han B. H. Carbon 2011, 49 (12), 3920. doi: 10.1016/j.carbon.2011.05.030
[22]  18 Bashar M. M. ; Siddiquee M. A. ; Khan M. A. Carbohydrate Polymers 2015, 120, 92. doi: 10.1016/j.carbpol.2014.11.023
[23]  19 Chen L. ; Xu Z. W. ; Li J. L. ; Li Y. L. ; Shan M. J. ; Wang C. H. ; Wang Z. ; Guo Q. W. ; Liu L. S. ; Chen G. W. ; Qian X. M. Journal of Materials Chemistry 2012, 22 (27), 13460. doi: 10.1039/c2jm31208e
[24]  20 Zhang B. W. ; Zhang Y. J. ; Peng C. ; Yu M. ; Li L. F. ; Deng B. ; Hu P. F. ; Fan C. H. ; Li J. Y. ; Huang Q. Nanoscale 2012, 4 (5), 1742. doi: 10.1039/c2nr11724j
[25]  26 Ma H. L. ; Zhang H. B. ; Hu Q. H. ; Li W. J. ; Jiang Z. G. ; Yu Z. Z. ; Dasari A. ACS Applied Materials & Interfaces 2012, 4 (4), 1948. doi: 10.1021/am201654b
[26]  杨宇雯; 冯刚; 卢章辉; 胡娜; 张飞; 陈祥树. 物理化学学报, 2014, 30, 1180. doi: 10.3866/PKU.WHXB201404141
[27]  4 Xu J. ; Yang D. Z. ; Liao X. Z. ; He Y. S. ; Ma Z. F. Acta Phys. -Chim. Sin 2015, 31, 913. doi: 10.3866/PKU.WHXB201503162
[28]  许婧; 杨德志; 廖小珍; 何雨石; 马紫峰. 物理化学学报, 2015, 31, 913. doi: 10.3866/PKU.WHXB201503162
[29]  9 Yuan F. Y. ; Zhang H. B. ; Li X. F. ; Ma H. L. ; Li X. Z. ; Yu Z. Z. Carbon 2014, 68, 653. doi: 10.1016/j.carbon.2013.11.046
[30]  21 Zhang Y. W. ; Ma H. L. ; Zhang Q. L. ; Peng J. ; Li J. Q. ; Zhai M. L. ; Yu Z. Z. Journal of Materials Chemistry 2012, 22 (26), 13064. doi: 10.1039/c2jm32231e

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133