全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201604262

Full-Text   Cite this paper   Add to My Lib

Abstract:

开发表面原子识别模型,对单个TiO2颗粒升温烧结过程中表面原子进行分类研究。模型对颗粒空间立方体网格化,利用标准球形颗粒体积积分法确定最佳网格尺寸为0.3 nm。通过表面网格识别实现表面原子分类,采用近邻网格中外部网格数量(Next)作为准则数判断目标网格是否为表面网格,确定最佳Next=9。基于LAMMPS软件模拟了半径为0.75 nm颗粒的升温过程,发现系统能量弛豫速度明显高于结构弛豫速度;利用表面识别模型分类分析原子特性,表面原子平均位移大于内部原子,且表面O原子迁移活性高于Ti原子;表面原子配位数低于内部原子,佐证表面结构规律性较差。研究结果为深入分析纳米材料活性位等结构分布奠定基础。
In this paper, we develop a surface atom identification model to perform atom identification and analysis of the surface atoms of a single TiO2 nanoparticle during the heating and sintering process. Cubic mesh was used to obtain the particle structure mesh, and the optimal mesh size of 0.3 nm was determined by volumetric integration of a spherical particle. Surface atoms were classified according to identification of surface meshes, and the number of external meshes in all of the neighbor meshes (Next) was set as a criterion to determine whether the target mesh was a surface mesh. The optimal value was Next=9. LAMMPS was used to simulate the heating process of a particle with a radius of 0.75 nm. The results show that energy relaxation is significantly faster than structure relaxation. The atom classification analysis with the developed surface atom identification model shows that displacement of the surface atoms is larger than the interior atoms, and surface O atoms are more active in migration than surface Ti atoms. The coordination number of surface atoms is lower than that of interior atoms. The present study provides fundamental information for analyzing the active structure distribution of nanoparticles

References

[1]  8 Ao P. ; Xu X. S. ; Xu X. X. ; Li J. H. ; Yan X. H Acta Phys.-Chim. Sin 2014, 30 (5), 950. doi: 10.3866/PKU.WHXB201403111
[2]  敖平; 许响生; 徐潇潇; 李加衡; 严新焕. 物理化学学报, 2014, 30 (5), 950. doi: 10.3866/PKU.WHXB201403111
[3]  10 Gao S.W. ; Lan Z. ; Wu W. X. ; Que L. F. ; Wu J. H. ; Lin J.M. ; Huang M. L Acta Phys.-Chim. Sin 2014, 30 (3), 446. doi: 10.3866/PKU.WHXB201401022
[4]  郭薇; 王开; 沈艺华; 张贺; 翁韬; 马廷丽. 物理化学学报, 2013, 29 (1), 82. doi: 10.3866/PKU.WHXB201211071
[5]  13 Zhao B. ; Uchikawa K. ; Wang H Proc. Combust. Inst 2007, 31, 851. doi: 10.1016/j.proci.2006.08.064
[6]  15 Zhao B. ; Uchikawa K. ; McCormick J. R. ; Ni C. Y. ; Chen J.G. ; Wang H Proc. Combust. Inst 2005, 30, 2569. doi: 10.1016/j.proci.2004.08.146
[7]  16 Fereidoon A. ; Aleaghee S. ; Taraghi I Comp. Mater. Sci 2015, 102, 220. doi: 10.1016/j.commatsci.2015.02.044
[8]  18 Lu J. ; Liu D. M. ; Yang X. N. ; Zhao Y. ; Liu H. X. ; Tang H. ; Cui F. Y Appl. Surf. Sci 2015, 357, 1114. doi: 10.1016/j.apsusc.2015.09.142
[9]  21 Zhang Y. Y. ; Li S. Q. ; Yan W. ; Yao Q. ; Tse S. J Chem. Phys 2011, 124, 084501. doi: 10.1063/1.3555633
[10]  22 Freitas R. ; Asta M. ; Koning M. D Comp. Mater. Sci 2016, 112, 333. doi: 10.1016/j.commatsci.2015.10.050
[11]  24 Zhang, Y. Y. Dynamics of Nanoparticles in Stagnation Flames.Ph. D. Dissertation. Tsinghua University, Beijing, 2013.
[12]  25 Zhang H. Z. ; Chen B. ; Banfield J. F Phys. Chem. Chem. Phys 2009, 11 (14), 2553. doi: 10.1039/b819623k
[13]  3 Zhang J. ; Wu B. ; Huang L. H. ; Liu P. L. ; Wang X. Y. ; Lu Z.D. ; Wu G. L. ; Zhang E. P. ; Wang H. B. ; Kong Z. ; Xi J. H. ; Ji Z. G. J. Alloy. Compd 2016, 661, 441. doi: 10.1016/j.jallcom.2015.11.225
[14]  4 Xu L. ; Tang C. Q. ; Huang Z. B Acta Phys.-Chim. Sin 2010, 26 (5), 1401. doi: 10.3866/PKU.WHXB20100526
[15]  徐凌; 唐超群; 黄宗斌. 物理化学学报, 2010, 26 (5), 1401. doi: 10.3866/PKU.WHXB20100526
[16]  5 Zhao M. ; Wang J. X. ; Feng C. H. ; Zou B. ; Chen C. ; Wang Z.Y. ; Wu F. Q. ; Zou L. H Acta Phys.-Chim. Sin 2007, 23 (7), 1003. doi: 10.3866/PKU.WHXB20070708
[17]  赵萌; 王金兴; 冯彩慧; 邹博; 陈骋; 王竹仪; 吴凤清; 邹乐辉. 物理化学学报, 2007, 23 (7), 1003. doi: 10.3866/PKU.WHXB20070708
[18]  6 Moon H. G. ; Shim Y. S. ; Jang H.W. ; Kim J. S. ; Choi K. J. ; Kang C. Y. ; Choi J.W. ; Park H. H. ; Yoon S. J Sens. Actuat. B-Chem 2010, 149, 116. doi: 10.1016/j.snb.2010.06.014
[19]  7 Chaudhari G. N. ; Bende A. M. ; Bodade A. B. ; Patil S. S. ; Sapkal V. S Sens. Actuat. B-Chem 2006, 115, 297. doi: 10.1016/j.snb.2005.09.014
[20]  高素雯; 兰章; 吴晚霞; 阙兰芳; 吴季怀; 林建明; 黄妙良. 物理化学学报, 2014, 30 (3), 446. doi: 10.3866/PKU.WHXB201401022
[21]  11 Guo W. ; Wang K. ; Shen Y. H. ; Zhang H. ; Weng T. ; Ma T. L Acta Phys.-Chim. Sin 2013, 29 (1), 82. doi: 10.3866/PKU.WHXB201211071
[22]  20 Tillotson M. J. ; Brett P. M. ; Bennett R. A. Ricardo G. C Surf. Sci 2015, 632, 142. doi: 10.1016/j.susc.2014.09.017
[23]  张易阳.基于滞止火焰合成的高温纳米颗粒动力学研究[D].北京:清华大学, 2013.
[24]  1 Liu M. ; Li H. M. ; Wang W. J Catal. Today 2016, 264, 236. doi: 10.1016/j.cattod.2015.08.044
[25]  2 Bet-moushoul E. ; Mansourpanah Y. ; Farhadi K. ; Tabatabaei M. Chem. Eng. J. 2016, 283, 29. doi: 10.1016/j.cej.2015.06.124
[26]  9 Marin R. P. ; Ishikawa S. ; Bahruji H. ; Shaw G. ; Kondrat S.A. ; Miedziak P. J. ; Morgan D. J. ; Taylor S. H. ; Bartley J. K. ; Edwards J. K. ; Bowker M. ; Ueda W. ; Hutchings G. J Appl. Catal. A 2015, 504, 62. doi: 10.1016/j.apcata.2015.02.023
[27]  12 Zhang Y. Y. ; Li S. Q. ; Deng S. L. ; Yao Q. ; Tse S. D. J. Aeros. Sci 2012, 44, 71. doi: 10.1063/1.3555633
[28]  14 Tolmachoff E. ; Memarzadeh S. ; Wang H. J. Phys. Chem. C 2011, 115, 21620. doi: 10.1021/jp206061h
[29]  17 Gautam S. ; Cole D Chem. Phys 2015, 458, 68. doi: 10.1016/j.chemphys.2015.07.012
[30]  19 Mushnoori S. ; Chong L. ; Dutt M Materials Today: Proceedings 2016, 3, 513. doi: 10.1016/j.matpr.2016.01.082
[31]  23 Martin M. G. ; Thompson A. P Fluid Phase Equilib 2004, 217, 105. doi: 10.1016/j.fluid.2003.06.007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133