全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201804111

Full-Text   Cite this paper   Add to My Lib

Abstract:

已有研究普遍认为铅离子(Pb2+)诱导富G适体链形成的G-四链体(Pb2+-G4)比钾离子(K+)诱导富G适体链形成的G-四链体(K+-G4)更为稳定,因而Pb2+可以置换K+-G4中的K+,而且K+的存在不影响Pb2+-G4的稳定性。有趣的是本研究发现K+ (20 μmol?L?1–1 mmol?L?1)不仅可以诱导10 μmol?L?1 Pb2+稳定的T2TT(Pb2+-T2TT,杂合G4结构)发生构型转换,甚至还可取代Pb2+-T2TT中的Pb2+,形成K+稳定的T2TT (K+-T2TT,平行G4结构),最终转化形成的K+-G4结构与单独K+诱导富G适体链形成K+-G4的构型基本一致。随后,进一步考察了另外7条富G适体链,发现这一转化过程具有一定的普适性。该研究结果为理解G4构型转化以及内嵌离子交换提供了新的视角,也为拓展G4在生化分析和生物领域的应用提供了新的理论基础。
DNA can adopt a diverse range of structural conformations, including duplexes, triplexes, and quadruplexes. Among these structures, G-quadruplexes have attracted much more attention of researchers. For G-rich DNA sequences, they can fold into multiple G-quadruplex conformations, such as parallel, antiparallel, or hybrid, and the exact conformation is influenced by G-rich DNA sequence, strand concentration, and binding cations. Among the factors influencing the G-quadruplex conformation and stability, cations played a really important role. Numerous studies have reported cation-dependent stability and topological changes of G-quadruplexes; however, most of studies have focused on the effect of individual cation (such as charge, radii, or hydration, etc.), and only few have assessed the effect of competition between cations at different concentrations. Actually, most biological and aqueous systems contained multiple cations and each of the cations had very different concentrations. Thus, investigation of the competitions between different cations (at different concentrations) for binding with G-quadruplexes and their effects on polymorphism of G-quadruplex is critical, which would improve our understanding of the roles of G-quadruplexes and assist us in further exploring their potential applications in biochemical, biomedical, and environmental systems. Under this situation, we focused on K+- and Pb2+-stabilized G-quadruplex, two major cations that are usually used to stabilize G-quadruplex. It has been shown that for a given G-quadruplex forming DNA sequence, Pb2+-stabilized G-quadruplex was more stable than K+-stabilized G-quadruplex, and Pb2+ could substitute K+ in K+-stabilized G-quadruplex. However, the concentrations of K+ that allow such a substitution are not completely studied. Previous studies have used G-quadruplex-based fluorescent, colorimetric, and electrochemical sensors for detecting Pb2+, and these methods show excellent selectivity for Pb2+ over K+. Although G-quadruplex-based Pb2+ sensors were developed, their applications in real samples containing K+ were greatly limited. Thus, how K+ and Pb2+ compete for binding to G-quadruplex and how K+

References

[1]  4 Xu L. ; Shen X. ; Hong S. ; Wang J. ; Zhang Y. ; Wang H. ; Zhang J. ; Pei R. Chem. Commun. 2015, 51, 8165. doi: 10.1039/c5cc01590a
[2]  8 Hwang K. ; Wu P. ; Kim T. ; Lei L. ; Tian S. ; Wang Y. ; Lu Y. Angew. Chem. Int. Ed. 2014, 53, 13798. doi: 10.1002/anie.201408333
[3]  10 Yang J. ; Dou B. ; Yuan R. ; Xiang Y. Anal. Chem. 2016, 88, 8218. doi: 10.1021/acs.analchem.6b02035
[4]  12 Li X. M. ; Zheng K. W. ; Hao Y. H. ; Tan Z. Angew. Chem. Int. Ed. 2016, 55, 13759. doi: 10.1002/anie.201607195
[5]  13 Hansel-Hertsch R. ; Antonio M. D. ; Balasubramanian S. Nat. Rev. Mol. Cell Biol. 2017, 18, 279. doi: 10.1038/nrm.2017.3
[6]  14 Ge L. ; Wang W. ; Sun X. ; Hou T. ; Li F. Anal. Chem. 2016, 88, 9691. doi: 10.1021/acs.analchem.6b02584
[7]  22 Kotch F. W. ; Fettinger J. C. ; Davis J. T. Org. Lett. 2000, 2, 3277. doi: 10.1021/ol0065120
[8]  24 Gray R. D. ; Chaires J. B. Biophys. Chem. 2011, 159, 205. doi: 10.1016/j.bpc.2011.06.012
[9]  28 Sket P. ; Crnugelj M. ; Plavec J. Nucleic Acids Res. 2005, 33, 3691. doi: 10.1093/nar/gki690
[10]  29 Liu Y. ; Ren J. ; Qin Y. ; Li J. ; Liu J. ; Wang E. Chem. Commun. 2012, 48, 802. doi: 10.1039/c1cc15979h
[11]  5 Liu J. ; Lu Y. J. Am. Chem. Soc. 2003, 125, 6642. doi: 10.1021/ja034775u
[12]  9 Yang L. ; Qing Z. ; Liu C. ; Tang Q. ; Li J. ; Yang S. ; Zheng J. ; Yang R. ; Tan W. Anal. Chem. 2016, 88, 9285. doi: 10.1021/acs.analchem.6b02667
[13]  27 Sun H. Chem. Commun. 2013, 49, 4510. doi: 10.1039/c3cc39020a
[14]  31 Zhai W. ; Du C. ; Li X. Chem. Commun. 2014, 50, 2093. doi: 10.1039/c3cc47763k
[15]  32 Li T. ; Wang E. ; Dong S. J. Am. Chem. Soc. 2009, 131, 15082. doi: 10.1021/ja9051075
[16]  33 Wang X. ; Xi Q. ; Peng L. ; Ge J. ; Kan Y. ; Jiang J. ; Shen G. ; Yu R. Anal. Methods 2013, 5, 5597. doi: 10.1039/c3ay41097h
[17]  34 Li T. ; Wang E. ; Dong S. Anal. Chem. 2010, 82, 1515. doi: 10.1021/ac902638v
[18]  35 Wang H. ; Wang D. M. ; Huang C. Z. Analyst 2015, 140, 5742. doi: 10.1039/c5an00884k
[19]  36 Guo Y. ; Zhou L. ; Xu L. ; Zhou X. ; Hu J. ; Pei R. Sci. Rep. 2014, 4, 7315. doi: 10.1038/srep07315
[20]  37 Zhao Y. ; Zhang Q. ; Wang W. ; Jin Y. Biosens. Bioelectron. 2013, 43, 231. doi: 10.1016/j.bios.2012.12.004
[21]  38 Guo L. ; Nie D. ; Qiu C. ; Zheng Q. ; Wu H. ; Ye P. ; Hao Y. ; Fu F. ; Chen G. Biosens. Bioelectron. 2012, 35, 123. doi: 10.1016/j.bios.2012.02.031
[22]  3 Sun H. ; Li X. ; Li Y. ; Fan L. ; Kraatz H. B. Analyst 2013, 138, 856. doi: 10.1039/c2an36564b
[23]  11 Liu Z. ; Luo X. ; Li Z. ; Huang Y. ; Nie Z. ; Wang H. H. ; Yao S. Anal. Chem. 2017, 89, 1892. doi: 10.1021/acs.analchem.6b04360
[24]  18 Liu W. ; Zheng B. ; Cheng S. ; Fu Y. ; Li W. ; Lau T. C. ; Liang H. Soft Matter 2012, 8, 7017. doi: 10.1039/c2sm25839k
[25]  30 Smirnov I. ; Shafer R. H. J. Mol. Biol. 2000, 296, 1. doi: 10.1006/jmbi.1999.3441
[26]  39 Chen H. ; Sun H. ; Zhang X. ; Sun X. ; Shi Y. ; Tang Y. RSC Adv. 2015, 5, 1730. doi: 10.1039/c4ra11395k
[27]  40 Cheng S. ; Zheng B. ; Wang M. ; Ge X. ; Zhao Q. ; Liu W. ; Lam M. H. Biosens. Bioelectron. 2014, 53, 479. doi: 10.1016/j.bios.2013.10.016
[28]  1 Davis J. T. Angew. Chem. Int. Ed. 2004, 43, 668. doi: 10.1002/anie.200300589
[29]  2 Maizels N. Nat. Struct. Mol. Biol. 2006, 13, 1055. doi: 10.1038/nsmb1171
[30]  6 Li C. L. ; Liu K. T. ; Lin Y. W. ; Chang H. T. Anal. Chem. 2011, 83, 225. doi: 10.1021/ac1028787
[31]  7 Kim H. N. ; Ren W. X. ; Kim J. S. ; Yoon J. Chem Soc. Rev. 2012, 41, 3210. doi: 10.1039/c1cs15245a
[32]  15 Hud N. V Nucleic Acid-Metal Ion Interactions; Royal Society of Chemistry: Cambridge, UK 2009.
[33]  16 Neidle S. ; Balasubramanian S. Quadruplex Nucleic Acids; Royal Society of Chemistry: Cambridge, UK 2006, Vol. 7..
[34]  17 Liu W. ; Zhu H. ; Zheng B. ; Cheng S. ; Fu Y. ; Li W. ; Lau T. C. ; Liang H. Nucleic Acids Res. 2012, 40, 4229. doi: 10.1093/nar/gkr1310
[35]  19 Liu W. ; Fu Y. ; Zheng B. ; Cheng S. ; Li W. ; Lau T. C. ; Liang H. J. Phys. Chem. B 2011, 115, 13051. doi: 10.1021/jp2074489
[36]  20 Ma L. ; Iezzi M. ; Kaucher M. S. ; Lam Y. F. ; Davis J. T. J. Am. Chem. Soc. 2006, 128, 15269. doi: 10.1021/ja064878n
[37]  21 Gu J. ; Leszczynski J. J. Phys. Chem. A 2002, 106, 529. doi: 10.1021/jp012739g
[38]  23 Hud N. V. ; Smith F. W. ; Anet F. A. ; Feigon J. Biochemistry 1996, 35, 15383. doi: 10.1021/bi9620565
[39]  25 Largy E. ; Marchand A. ; Amrane S. ; Gabelica V. ; Mergny J. L. J. Am. Chem. Soc. 2016, 138, 2780. doi: 10.1021/jacs.5b13130
[40]  26 Sen D. ; Gilbert W. Nature 1990, 344, 410. doi: 10.1038/344410a0
[41]  41 Li T. ; Dong S. ; Wang E. J. Am. Chem. Soc. 2010, 132, 13156. doi: 10.1021/ja105849m
[42]  42 Bagheri Z. ; Ranjbar B. ; Latifi H. ; Zibaii M. I. ; Moghadam T. T. ; Azizi A. Int. J. Biol. Macromol. 2015, 72, 806. doi: 10.1016/j.ijbiomac.2014.09.016
[43]  43 Smirnov I. V. ; Kotch F. W. ; Pickering I. J. ; Davis J. T. ; Shafer R. H. Biochemistry 2002, 41, 12133. doi: 10.1021/bi020310p

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133