有机太阳能电池(OSCs)活性层中的给体材料主要包括共轭聚合物与有机小分子,由于有机小分子给体具有结构确定、易于提纯、重复性高等独特的优势,近年来受到研究工作者的广泛关注。本工作中,我们采取具有良好共平面性的三联苯并二噻吩(TriBDT-T)为推电子(D)中心共轭单元,分别以罗丹宁(RN)、氰基罗丹宁(RCN)和1, 3-茚二酮(IDO)为拉电子(A)共轭端基,设计并合成了三种具有A-D-A型结构的小分子给体材料TriBDT-T-RN、TriBDT-T-RCN和TriBDT-T-IDO。我们对比研究了三种端基对其热分解温度、吸收光谱和分子能级等基本性能的影响,并分别将三种小分子给体与非富勒烯型受体材料IT-4F共混制备器件,详细研究了活性层形貌与光伏性能之间的关系。结果表明,不同的A型端基对小分子给体材料的光学性能、电化学性能、光伏器件中活性层的微观形貌以及能量转换效率(PCE)产生显著影响。基于TriBDT-T-RN:IT-4F、TriBDT-T-RCN:IT-4F和TriBDT-T-IDO:IT-4F的光伏器件的能量转换效率分别为9.25%、6.31%和6.18%。 In recent years, organic solar cells (OSCs) have attracted increasing attention, and the power conversion efficiency (PCE) of OSCs has markedly improved. To enhance the photovoltaic properties of OSCs, it is important to develop the donor materials in the light-harvesting layer, which mainly include conjugated polymers and small molecules (SMs). Compared with polymeric materials, small-molecule materials have been widely investigated for their superior characteristics, such as well-defined molecular structures that can provide good batch-to-batch reproducibility. In this work, we synthesized three SM donor materials with theacceptor-donor-acceptor (A-D-A) structure by employing the trialkylthienyl-substituted benzodithiophene (TriBDT-T) unit as the D-core unit, and rhodanine (RN), cyano-rhodanine (RCN), and 1, 3-indanone (IDO) as the A end groups, respectively. The optical properties, molecular energy levels, and thermogravimetic characteristics of the three SMs were studied; moreover, the blend morphologies and photovoltaic properties of the devices by employing the non-fullerene (NF) acceptor, IT-4F, were systematically investigated. The results showed that 1) the three SMs exhibit good thermal stabilities as evinced by thermogravimetric analysis (TGA), and all decomposition temperatures exceeded 410 ℃; 2) They all exhibit strong and broad absorption in the visible light range (300–700 nm), and show similar molar extinction coefficients; 3) the HOMO levels are -5.47 eV, -5.54 eV, and -5.44 eV for RN, RCN, and IDO, respectively, implying the clear influence of the different end groups for the energy levels of the A-D-A-type SMs; the slight differences in the optical and electrochemical properties of the corresponding donor material could be attributed to the different electron-withdrawing ability of the A-type end groups. When studying the photovoltaic properties, interestingly, the RN:IT-4F blend was found to form fibrillar-like aggregates with appropriate size, and the corresponding devices exhibited desirable short circuit current (Jsc) and thus the highest PCE
References
[1]
23 Qiu B. ; Xue L. ; Yang Y. ; Bin H. ; Zhang Y. ; Zhang C. ; Xiao M. ; Park K. ; Morrison W. ; Zhang Z. G. ; et al Chem. Mater. 2017, 29, 7543. doi: 10.1021/acs.chemmater.7b02536
[2]
24 Yao H. ; Cui Y. ; Yu R. ; Gao B. ; Zhang H. ; Hou J. Angew. Chem., Int. Ed. 2017, 56 (11), 3045. doi: 10.1002/anie.201610944
[3]
25 Duan R. M. ; Cui Y. ; Zhao Y. F. ; Li C. ; Chen L. ; Hou J. H. ; Wagner M. ; Baumgarten M. ; He C. ; Mullen K. ChemSusChem 2016, 9 (9), 973. doi: 10.1002/cssc.201501626
[4]
26 Zhang J. ; Zhu X. W. ; He C. ; Bin H. J. ; Xue L. W. ; Wang W. G. ; Yang Y. K. ; Yuan N. Y. ; Ding J. N. ; Wei Z. X. ; et al J. Mater. Chem. A 2016, 4 (30), 11747. doi: 10.1039/c6ta03695c
[5]
27 Tang W. ; Huang D. ; He C. ; Yi Y. ; Zhang J. ; Di C. ; Zhang Z. ; Li Y. Org. Electron. 2014, 15 (6), 1155. doi: 10.1016/j.orgel.2014.03.005
[6]
28 Zhang Q. ; Kan B. ; Liu F. ; Long G. ; Wan X. ; Chen X. ; Zuo Y. ; Ni W. ; Zhang H. ; Li M. ; et al Nat. Photonics 2014, 9 (1), 35. doi: 10.1038/nphoton.2014.269
[7]
29 Mercier L. G. ; Mishra A. ; Ishigaki Y. ; Henne F. ; Schulz G. ; Bauerle P. Org. Lett. 2014, 16 (10), 2642. doi: 10.1021/ol500809e
[8]
30 Lin Y. ; Wang J. ; Zhang Z. G. ; Bai H. ; Li Y. ; Zhu D. ; Zhan X. Adv. Mater. 2015, 27 (7), 1170. doi: 10.1002/adma.201404317
[9]
34 Yao H. ; Ye L. ; Hou J. ; Jang B. ; Han G. ; Cui Y. ; Su G. M. ; Wang C. ; Gao B. ; Yu R. ; et al Adv. Mater. 20117, 29 (21) doi: 10.1002/adma.201700254
[10]
36 Ni W. ; Li M. ; Wan X. ; Zuo Y. ; Kan B. ; Feng H. ; Zhang Q. ; Chen Y. Sci. China-Chem. 2014, 58 (2), 339. doi: 10.1007/s11426-014-5220-x
[11]
37 Kim J. ; Yun M. H. ; Anant P. ; Cho S. ; Jacob J. ; Kim J. Y. ; Yang C. Chemistry 2011, 17 (51), 14681. doi: 10.1002/chem.201101258
[12]
38 Cheng Y. J. ; Ho Y. J. ; Chen C. H. ; Kao W. S. ; Wu C. E. ; Hsu S. L. ; Hsu C. S. Macromolecules 2012, 45 (6), 2690. doi: 10.1021/ma202764v
[13]
1 Li G. ; Zhu R. ; Yang Y. Nat. Photonics 2012, 6 (3), 153. doi: 10.1038/nphoton.2012.11
[14]
2 Brabec C. J. ; Gowrisanker S. ; Halls J. J. ; Laird D. ; Jia S. ; Williams S. P. Adv. Mater. 2010, 22 (34), 3839. doi: 10.1002/adma.200903697
[15]
3 Li Y. F. Accounts Chem Res 2012, 45 (5), 723. doi: 10.1021/ar2002446
[16]
4 Yu G. ; Gao J. ; Hummelen J. C. ; Wudl F. ; Heeger A. J. Science 1995, 270 (5243), 1789. doi: 10.1126/science.270.5243.1789
[17]
5 Zhao W. ; Li S. ; Yao H. ; Zhang S. ; Zhang Y. ; Yang B. ; Hou J. J. Am. Chem. Soc. 2017, 139 (21), 7148. doi: 10.1021/jacs.7b02677
[18]
6 Yao H. F. ; Hou J. H. Acta Polym. Sin. 2016, 11, 1468. doi: 10.11777/j.issn1000-3304.2016.16216
10 Liang N. ; Jiang W. ; Hou J. ; Wang Z. Mater. Chem. Front. 2017, 1 (7), 1291. doi: 10.1039/c6qm00247a
[23]
16 Deng D. ; Zhang Y. ; Yuan L. ; He C. ; Lu K. ; Wei Z. Adv. Energy Mater. 2014, 4 (17), 1400538. doi: 10.1002/aenm.201400538
[24]
18 Badgujar S. ; Lee G. Y. ; Park T. ; Song C. E. ; Park S. ; Oh S. ; Shin W. S. ; Moon S. J. ; Lee J. C. ; Lee S. K. Adv. Energy Mater. 2016, 6 (12), 1600228. doi: 10.1002/aenm.201600228
[25]
19 Zhang S. ; Yang L. ; Liu D. ; He C. ; Zhang J. ; Zhang Y. ; Hou J. Sci. China-Chem. 2017. doi: 10.1007/s11426-017-9121-0
[26]
20 Cho M. J. ; Park G. E. ; Park S. Y. ; Kim Y. U. ; Choi D. H. RSC Adv. 2017, 7 (62), 38773. doi: 10.1039/c7ra06879d
[27]
21 Oliva M. M. ; Riano A. ; Arrechea-Marcos I. ; Ramos M. M. ; Gomez R. ; Algarra M. ; Ortiz R. P. ; Navarrete J. T. L. ; Segura J. L. ; Casado J. J. Phys. Chem. C 2016, 120 (40), 23276. doi: 10.1021/acs.jpcc.6b08123
[28]
22 Wang W. ; Shen P. ; Dong X. ; Weng C. ; Wang G. ; Bin H. ; Zhang J. ; Zhang Z. G. ; Li Y. ACS Appl. Mater. Interfaces 2017, 9 (5), 4614. doi: 10.1021/acsami.6b14114
[29]
31 Yang Y. ; Zhang Z. G. ; Bin H. ; Chen S. ; Gao L. ; Xue L. ; Yang C. ; Li Y. J. Am. Chem. Soc. 2016, 138 (45), 15011. doi: 10.1021/jacs.6b09110
[30]
32 Yao H. ; Chen Y. ; Qin Y. ; Yu R. ; Cui Y. ; Yang B. ; Li S. ; Zhang K. ; Hou J. Adv. Mater. 2016, 28 (37), 8283. doi: 10.1002/adma.201602642
[31]
33 Lin Y. ; Li T. ; Zhao F. ; Han L. ; Wang Z. ; Wu Y. ; He Q. ; Wang J. ; Huo L. ; Sun Y. ; et al Adv. Energy Mater. 2016, 6 (18), 1600854. doi: 10.1002/aenm.201600854
[32]
35 Yang L. ; Zhang S. ; He C. ; Zhang J. ; Yao H. ; Yang Y. ; Zhang Y. ; Zhao W. ; Hou J. J. Am. Chem. Soc. 2017, 139 (5), 1958. doi: 10.1021/jacs.6b11612
[33]
39 Liu Y. ; Chen C. C. ; Hong Z. ; Gao J. ; Yang Y. M. ; Zhou H. ; Dou L. ; Li G. ; Yang Y. Sci. Rep. 2013, 3, 3356. doi: 10.1038/srep03356
[34]
40 Yong W. ; Zhang M. ; Xin X. ; Li Z. ; Wu Y. ; Guo X. ; Yang Z. ; Hou J. J. Mater. Chem. A 2013, 1 (45), 14214. doi: 10.1039/c3ta12229h
[35]
8 Li W. N. ; Yao H. F. ; Zhang H. ; Li S. S. ; Hou J. H. Chem.-Asian J. 2017, 12 (17), 2160. doi: 10.1002/asia.201700692
[36]
9 Nielsen C. B. ; Holliday S. ; Chen H. Y. ; Cryer S. J. ; McCulloch I. Accounts Chem Res 2015, 48 (11), 2803. doi: 10.1021/acs.accounts.5b00199
[37]
12 Shen S. ; Jiang P. ; He C. ; Zhang J. ; Shen P. ; Zhang Y. ; Yi Y. ; Zhang Z. ; Li Z. ; Li Y. Chem. Mater. 2013, 25 (11), 2274. doi: 10.1021/cm400782q
[38]
13 Li M. ; Liu F. ; Wan X. ; Ni W. ; Kan B. ; Feng H. ; Zhang Q. ; Yang X. ; Wang Y. ; Zhang Y. ; et al Adv. Mater. 2015, 27 (40), 6296. doi: 10.1002/adma.201502645
[39]
11 Sun K. ; Xiao Z. ; Lu S. ; Zajaczkowski W. ; Pisula W. ; Hanssen E. ; White J. M. ; Williamson R. M. ; Subbiah J. ; Ouyang J. ; et al Nat. Commun. 2015, 6, 6013. doi: 10.1038/ncomms7013
[40]
14 Zhou J. ; Zuo Y. ; Wan X. ; Long G. ; Zhang Q. ; Ni W. ; Liu Y. ; Li Z. ; He G. ; Li C. ; et al J. Am. Chem. Soc. 2013, 135 (23), 8484. doi: 10.1021/ja403318y
[41]
15 Li M. ; Ni W. ; Wan X. ; Zhang Q. ; Kan B. ; Chen Y. J. Mater. Chem. A 2015, 3 (9), 4765. doi: 10.1039/c4ta06452f
[42]
17 Gao L. ; Zhang J. ; He C. ; Zhang Y. ; Sun Q. J. ; Li Y. F. Sci. China-Chem. 2014, 57 (7), 966. doi: 10.1007/s11426-014-5114-y