模仿水通道蛋白结构在直径大于2 nm的(15, 15)的碳纳米管内壁添加不同数量的―NH3+和―COO-,并结合端口改性建立连续的碳纳米管膜模型,利用分子动力学模拟方法研究了水以及Na+和Cl-在碳纳米管中的通量、密度分布和离子进入碳纳米管的平均力势。结果表明,在200 MPa压力下,对碳纳米管进行内壁和端口改性可以在保持较高水通量基础上显著提高碳纳米管的截盐作用。当在(15, 15)碳纳米管内壁添加5对―COO-和―NH3+基团或内壁添加4对―COO-和―NH3+且端口添加1对时, Cl-截盐率可达到100%, Na+的截盐率达到88%。改性(15, 15)碳纳米管的最小水通量仍是未改性(8, 8)碳纳米管的4.6倍。 Different charged functional groups including ―COO- and ―NH3+ were added to the interior and entrance of (15, 15) armchair carbon nanotubes (CNTs) with a diameter larger than 2 nm to construct membranes that imitated the structure of the protein aquaporin-4.The potential of mean force, conductance, and density distributions of ions in the CNTs were calculated.The results showed that under 200 MPa, CNTs modified with oppositely charged groups in their interior and at their entrance could greatly improve salt desalination on the basis of high water flux.When five pairs of ―COO- and ―NH3+ functional groups were added to the interior of a CNT or four pairs of ―COO- and ―NH3+ functional groups were added to the interior of a CNT with another pair at the entrance, 100% Cl- rejection and 88% Na+ rejection were achieved.The lowest water conductivity of the functionalized CNTs was 4.6 times that of (8, 8) unfunctionalized CNTs, and even slightly lower than that of unfunctionalized (15, 15) CNTs
References
[1]
3 World T. ; Assessment W. ; Talafre P. J. ; Their F. K. F. Piarnorgau 2009, 128, 343.
11 Thomas M. ; Corry B. ; Hilder T. A. Small 2014, 10, 1453. doi: 10.1002/smll.v10.8
[4]
19 Altalhi T. ; Basiuk E. V. ; Rizo J. ; Basiuk V. A. ; Ginic-Markovic M. ; Clarke S. ; Clarke S. ; Losic D. Chemeca 2012: Quality of Life Through Chemical Engineering 2012, 23, 1712.
[5]
20 Yang D. F. ; Liu Q. Z. ; Li H. M. ; Gao C. K. Chinese Journal of Appilied Chemistry 20014, 31 (11), 1345. doi: 10.3724/SP.J.1095.2014.30622
21 Phillips J. C. ; Braun R. ; Wang W. ; Gumbart J. ; Tajkhorshid E. ; Villa E. ; Chipot C. ; Skeel R. D. ; Kale L. ; Schulten K. J. Comput. Chem. 2005, 26, 1781. doi: 10.1002/jcc.20289
[8]
24 Zhu F. ; Tajkhorshid E. Biophysical Journal 2004, 86, 50. doi: 10.1016/S0006-3495(04)74082-5
[9]
25 Eric D. ; David R. G. ; Andrew P. Journal of Chemical Physics 2008, 128, 144120. doi: 10.1063/1.2829861
[10]
26 Li Q. ; Yang D. F. ; Shi J. S. ; Xu X. ; Yan S. H. ; Liu Q. Z. Desalination 2016, 379, 164.
[11]
27 Allen T.W. ; Kuyucak S. ; Chung S. H. Journal of Chemical Physics 1999, 111, 7985. doi: 10.1063/1.480132
[12]
17 Kyotani T. ; Nakazaki S. ; Xu W. H. ; Tomita A. Carbon 2001, 39, 782. doi: 10.1016/S0008-6223(01)00013-6
[13]
18 Alsawat M. ; Altalhi T. ; Kumeria T. ; Santos A. ; Losic D. Carbon 2015, 93, 681. doi: 10.1016/j.carbon.2015.05.090
[14]
1 Oki T. ; Kanae S. Science 2006, 313, 1068. doi: 10.1126/science.1128845
[15]
2 Field C. B. ; Barros V. R. ; Mastrandrea M. D. ; Mach K. J. ; Abdrabo M. A. K. ; Adger W. N. ; Douglas J. ; A; Jonathon B. Contribution of Working Group II to the Third Assessment Report 2014, 56, 81.
[16]
5 Hummer G. ; Rasaiah J. C. ; Noworyta J. P. Nature 2001, 414, 188. doi: 10.1038/35102535
[17]
9 Majumder M. ; Chopra N. ; Andrews R. ; Hinds B. J. Nature 2005, 438, 44. doi: 10.1038/438044a
[18]
22 MacKerell A. D. ; Bashford D. ; Bellott M. ; Dunbrack R. L. ; Evanseck J. D. ; Field M. J. ; Fischer S. ; Gao J. ; Guo H. ; Ha S. J. Phys. Chem. B 1998, 102, 3586. doi: 10.1021/jp973084f
[19]
23 Zhu F. ; Tajkhorshid E. ; Schulten K. Biophysical Journal 2002, 83, 154. doi: 10.1016/S0006-3495(02)75157-6
[20]
4 Zhou Y. ; Yu S. Z. ; Gao C. K. Journal of Chemical Industry and Engineering (China) 2006, 57, 1370. doi: 10.3321/j.issn:0438-1157.2006.06.019
[21]
6 Striolo A. Nano Lett. 2006, 6, 633. doi: 10.1021/nl052254u
[22]
7 Amrit K. ; Shekhar G. ; Gerhard H. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, 10175. doi: 10.1073/pnas.1633354100
[23]
8 Holt J. K. ; Park H. K. ; Wang Y. ; Stadermann M. ; Artyukhin A. B. ; Grigoropoulos C. P. ; Noy A. ; Bakajin O. Science 2006, 312, 1034. doi: 10.1126/science.1126298
[24]
10 Corry B. The Journal of Physical Chemistry B 2008, 112, 1427. doi: 10.1021/jp709845u
[25]
12 Chen S. ; Corry B. Journal of Physical Chemistry B 2009, 113, 7642. doi: 10.1021/jp810102u
[26]
13 Corry B. Energy & Environmental Science 2011, 3, 751. doi: 10.1039/C0EE00481B
[27]
14 Zheng J. ; Lennon E.M; ; Tsao H. K. ; Sheng Y. J. ; Jiang S. Journal of Chemical Physics 2005, 122, 279. doi: 10.1063/1.1908619
[28]
15 Zhu Y. ; Wei. M. ; Shao Q. ; Lu L. ; Lu X. ; Shen W. Journal of Physical Chemistry C 2008, 113, 882. doi: 10.1021/jp8089006
[29]
16 Gong X. J. ; Li J. C. ; Xu K. ; Wang J. F. ; Yang H. Journal of the American Chemical Society 2010, 132, 1873. doi: 10.1021/ja905753p