全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201509091

Full-Text   Cite this paper   Add to My Lib

Abstract:

三种多级结构花状硫化铜通过水热法,利用纳米薄片自组装形成.加入有机分子聚乙烯吡咯烷酮或1, 3, 5-均苯三甲酸调控其片层密度.产物作为基板生长镍纳米颗粒.通过环境扫描电子显微镜(SEM), X射线衍射(XRD),透射电子显微镜(TEM)等对这种复合物的结构进行表征.利用紫外-可见吸收光谱,研究了产物作为催化剂催化还原4-硝基苯酚的性能.结果表明,长在具有最稀疏片层的样品(Ni@SUB2)上的镍纳米颗粒(NiNPs,直径5 nm左右)具有超低负载量,为0.469% (w). Ni@SUB2在三种Ni@SUB复合物中具有最好的催化性能.还原4-硝基苯酚的反应中, 4-硝基酚初始浓度为0.2 mmol·L-1时Ni@SUB2在4 min中内转化率可以实现100%,而等量的纯Ni纳米颗粒转化率只有43%.增强的催化性能可以归结为镍纳米颗粒在硫化铜基板上得到良好分散,可以提供更多催化位点.同时硫化铜基板不溶于水,可以通过离心的方式回收催化剂,有利于环境保护.
Three types of hierarchical, flower-like CuS particles were prepared by a hydrothermal method and samples were formulated as thin nanosheets. The aggregation density of the sheets could be readily controlled with the aid of polyvinylpyrrolidone (PVP) or 1, 3, 5-benzenetricarboxylic acid (BTC) organic molecules. The three substrates were then used for the growth of nickel nanocatalysts and the structures of the composites characterized by environment scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Ultraviolet-visible absorption spectrometry was applied to study the catalytic reduction of 4-nitrophenol. Results show that a sample of Ni nanoparticles (Ni NPs, ~5 nm in diameter) grown on CuS micro-flowers, composed of the sparsest nanosheets (Ni@SUB2) with an ultralow loading of 0.469% (w), showed the best catalytic properties amongst the three Ni@SUB composites. During reduction of 4-nitrophenol with initial 4-nitrophenol concentrations of 0.2 mmol·L-1, the Ni@SUB2 showed almost 100% transformation within 4 min, while the same quantity of pure Ni NPs showed a transformation of only ~43%. The enhanced catalytic properties for 4-nitrophenol degradation could be ascribed to well-dispersed Ni NPs supported on the CuS substrate providing greater numbers of catalytic active sites. Furthermore, because of CuS is insoluble, it can be easily collected by centrifugation, which can be environmentally beneficial

References

[1]  3 Liu Y. T. ; Duan Z. Q. ; Xie X. M. ; Ye X. Y. Chem. Commun 2013, 49, 1642. doi: 10.1039/c3cc38567a
[2]  13 Jiao Z. F. ; Dong L. L. ; Guo X. N. ; Jin G. Q. ; Guo X. Y. ; Wang X. M. Acta Phys. -Chim. Sin 2014, 30, 1941. doi: 10.3866/PKU.WHXB201408181
[3]  焦志锋; 董莉莉; 郭晓宁; 靳国强; 郭向云; 王晓敏. 物理化学学报, 2014, 30, 1941. doi: 10.3866/PKU.WHXB201408181
[4]  19 Jiang Z. F. ; Xie J. M. ; Jiang D. L. ; Jing J. J. ; Qin H. R. CrystEngComm 2012, 14, 4601. doi: 10.1039/c2ce25205h
[5]  21 Gu X. M. ; Qi W. ; Xu X. Z. ; Sun Z. H. ; Zhang L. Y. ; Liu W. ; Pan X. L. ; Su D. S. Nanoscale 2014, 6, 6609. doi: 10.1039/c4nr00826j
[6]  22 Xu D. ; Diao P. ; Jin T. ; Wu Q. Y. ; Liu X. F. ; Guo X. ; Gong H. Y. ; Li F. ; Xiang M. ; Yu R. H. ACS Appl. Mater. Interfaces 2015, 7, 16738. doi: 10.1021/acsami.5b04504
[7]  23 Zhou Y. ; Zhu Y. H. ; Yang X. L. ; Huang J. F. ; Chen W. ; Lv X. M. ; Li C.Y. ; Li C. Z. RSC Adv 2015, 5, 50454. doi: 10.1039/C5RA08243A
[8]  24 Pachfule P. ; Kandambeth S. ; Díaz D. D. ; Banerjee R. Chem. Commun 2014, 50, 3169. doi: 10.1039/c3cc49176e
[9]  27 An Q. ; Yu M. ; Zhang Y. T. ; Ma W. F. ; Guo J. ; Wang C. C. J. Phys. Chem. C 2012, 116, 22432. doi: 10.1021/jp307629m
[10]  4 Fan H. B. ; Zhang D. F. ; Guo L. Acta Phys. -Chim. Sin 2012, 28, 2214. doi: 10.3866/PKU.WHXB201206122
[11]  8 Xie Y. ; Riedinger A. ; Prato M. ; Casu A. ; Genovese A. ; Guardia P. ; Sottini S. ; Sangregorio C. ; Miszta K. ; Ghosh S. ; Pellegrino T. ; Manna L. J. Am. Chem. Soc 2013, 135, 17630. doi: 10.1021/ja409754v
[12]  15 Wu T. ; Cai W. Y. ; Zhang P. ; Song X. F. ; Gao L. RSC Adv 2013, 3, 23976. doi: 10.1039/c3ra43203c
[13]  16 Galenko E. E. ; Galenko A. V. ; Khlebnikov A. F. ; Novikov M. S. RSC Adv 2015, 5, 18172. doi: 10.1039/C5RA01889G
[14]  18 Zhang S. H. ; Gai S. L. ; He F. ; Ding S. J. ; Li L. ; Yang P. P. Nanoscale 2014, 6, 11181. doi: 10.1039/C4NR02096K
[15]  20 Wu Y. G. ; Wen M. ; Wu Q. S. ; Fang H. J.Phys. Chem. C 2014, 118, 6307. doi: 10.1021/jp412711b
[16]  范海滨; 张东凤; 郭林. 物理化学学报, 2012, 28, 2214. doi: 10.3866/PKU.WHXB201206122
[17]  5 Chen F. X. ; Fan W. Q. ; Zhou T. Y. ; Huang W. H. Acta Phys. -Chim. Sin 2013, 29, 167. doi: 10.3866/PKU.WHXB201210291
[18]  9 Guo L. R. ; Panderi I. ; Yan D. D. ; Szulak K. ; Li Y. J. ; Chen Y. T. ; Ma H. ; Niesen D. B. ; Seeram N. ; Ahmed A. ; Yan B. F. ; Pantazatos D. ; Lu W. ACS Nano 2013, 7, 8780. doi: 10.1021/nn403202w
[19]  10 Kim M. ; Park J. C. ; Kim A. ; Park K. H. ; Song H. Langmuir 2012, 28, 6441. doi: 10.1021/la300148e
[20]  11 Yang Y. ; Ren Y. ; Sun C. J. ; Hao S. J. Green Chem 2014, 16, 2273. doi: 10.1039/c3gc42121j
[21]  12 Li P. Z. ; Aijaz A. ; Xu Q. Angew. Chem. Int. Edit 2012, 51, 6753. doi: 10.1002/anie.201202055
[22]  14 Zhu Z. J. ; Zhai Y. L. ; Dong S. J. ACS Appl. Mater. Interfaces 2014, 6, 16721. doi: 10.1021/am503689t
[23]  25 Zhao X. H. ; Li Q. ; Ma X. M. ; Xiong Z. ; Quan F. Y. ; Xia Y. Z. RSC Adv 2015, 5, 49534. doi: 10.1039/C5RA07821K
[24]  1 Bu F. X. ; Hu M. ; Xu L. ; Meng Q. ; Mao G. Y. ; Jiang D. M. ; Jiang J. S. Chem. Commun 2014, 50, 8543. doi: 10.1039/C4CC02909G
[25]  2 Butt F. K. ; Tahir M. ; Cao C. B. ; Idrees F. ; Ahmed R. ; Khan W. S. ; Ali Z. ; Mahmood N. ; Tanveer M. ; Mahmood A. ; Aslam I. ACS Appl. Mater. Interfaces 2014, 6, 13635. doi: 10.1021/am503136h
[26]  陈拂晓; 范伟强; 周腾云; 黄卫红. 物理化学学报, 2013, 29, 167. doi: 10.3866/PKU.WHXB201210291
[27]  6 Zhang Z. C. ; Chen Y. F. ; He S. ; Zhang J. C. ; Xu X. B. ; Yang Y. ; Nosheen F. ; Saleem F. ; He W. ; Wang X. Angew. Chem. Int. Edit 2014, 53, 12517.
[28]  7 Goel S. ; Chen F. ; Cai W. B. Small 2014, 10, 631. doi: 10.1002/smll.201301174
[29]  17 Yang Y. ; Zhang Y. ; Sun C. J. ; Li X. S. ; Zhang W. ; Ma X. H. ; Ren Y. ; Zhang X. ChemCatChem 2014, 6, 3084. doi: 10.1002/cctc.201402607
[30]  26 Shin K. S. ; Cho Y. K. ; Choi J. Y. ; Kim K. Appl. Catal. A 2012, 413-414, 170.
[31]  28 Baruah B. ; Gabriel G. J. ; Akbashev M. J. ; Booher M. E. Langmuir 2013, 29, 4225. doi: 10.1021/la305068p

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133