APF密度泛函色散校正(APF-D)是由B3PW91和PBE0杂化的APF泛函,加上球形原子模型(SAM)色散校正构成的一种有别于Grimme经验色散校正的密度泛函理论色散校正(DFT-D)方法,计算稀有气体及其与小分子复合物结合能和势能面准确性很高,但对常见氢键、C―H…π和π…π等复合物结合能计算结果明显偏大,在一般性分子间相互作用问题研究中一直未被认可和采纳。我们发现APF-D结合能计算结果偏大的原因是APF泛函与SAM色散校正重复计入了一定量的长程色散能;通过引入不依赖于体系的SAM色散能阻力因子ζ,简单而有效地解决了APF-D色散能过度补偿问题,提出了APF-D改进方案APF-D*;通过S66和L7标准测试集的对照计算表明,APF-D*结合能准确性远高于原始APF-D,达到和超过目前常用的B3LYPD3和ωB97X-D方法水平,并具有较好的计算效率,期待在大体系分子间相互作用研究中得到广泛应用。 Austin-Petersson-Frisch (APF) is a new hybrid density functional method that combines B3PW91 and PBE0. APF-D provides an additional empirical dispersion correction method based on a spherical atom model (SAM), which is different from the Grimme's empirical dispersion correction method. APF-D accurately describes the binding energy and the potential energy surfaces of complexes of noble gas atoms and small hydrocarbon dimers. However, APF-D is not accepted as a standard method to study intermolecular interactions because the results often show a large deviation from the normal range when using the APF-D method to calculate the binding energy of hydrogen bonded complexes, C-H…π and π…π interactions. Our research identified that such a deviation arises from some long-range dispersion that has been double counted by the APF function and the SAM dispersion correction. Therefore, we propose an improved APF-D method, termed APF-D*. By taking advantage of ζ, which is independent of SAM dispersion, we were able to solve effectively the problem of excessive dispersion compensation in APF-D. By comparing the results from S66 and L7 benchmark sets, we find that APF-D* greatly improved the precision of calculations over the traditional APF-D method. The overall accuracy of APF-D* was found to be comparable to or better than current leading DFT methods, such as B3LYP-D3 and ωB97X-D. However, both B3LYP-D3 and ωB97X-D have a much larger computational cost than APF-D*. We believe that APF-D* is a better method to calculate of the intermolecular energy of large molecules
References
[1]
1 Lewars, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Kluwer Academic Publishers: Massachusetts, 2010; pp 5―6.
[2]
2 Zhao Y. ; Truhlar D. G. J. Chem. Theory Comput. 2005, 1, 415. doi: 10.1021/ct049851d
[3]
3 Xu X. ; Goddard W. A. J. Phys. Chem. A 2004, 108, 2305. doi: 10.1021/jp035869t
[4]
5 Rezac J. ; Hobza P. Chem. Rev. 2016, 116, 5038. doi: 10.1021/acs.chemrev.5b00526
[5]
9 Burns L. A. ; Vázquez-Mayagoitia A. ; Sumpter B. G. ; Sherrill D. J. Chem. Phys. 2011, 134, 95. doi: 10.1063/1.3545971
[6]
11 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford CT, 2009.
[7]
12 Mardirossian N. ; Head-Gordon M. J. Chem. Phys. 2015, 142, A1113. doi: 10.1063/1.4907719
[8]
13 Mardirossian N. ; Head-Gordon M. J. Chem. Phys. 2016, 144, 214110. doi: 10.1063/1.4952647
[9]
20 Podeszwa R. ; Patkowski K. ; Szalewicz K. Phys. Chem. Chem. Phys. 2010, 12, 5974. doi: 10.1039/B926808A
[10]
24 Woon D. E. ; Dunning T. H. J. Chem. Phys. 1993, 98, 1358. doi: 10.1063/1.464303
[11]
25 Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys 2005, 7, 3297. doi: 10.1039/b508541a
[12]
6 Grimme S. ; Hansen A. ; Brandenburg J. G. ; Bannwarth C. Chem. Rev 2016, 116 (SI), 5105. doi: 10.1021/acs.chemrev.5b00533
[13]
8 Chai J. D. ; Head-Gordon M. Phys. Chem. Chem. Phys. 2008, 10, 6615. doi: 10.1039/B810189B
[14]
10 Austin A. ; Petersson G. A. ; Frisch M. J. ; Dobek F. J. ; Scalmani G. ; Throssell K. J. Chem. Theory Comput. 2012, 8, 4989. doi: 10.1021/ct300778e
[15]
21 Carter D. J. ; Rohl A. L. J. Chem. Theory Comput. 2012, 8, 281. doi: 10.1021/ct200679b
[16]
22 Dunning T. H. J. Chem. Phys. 1989, 90, 1007. doi: 10.1063/1.456153
[17]
23 Kendall R. A. ; Dunning T. H. ; Harrison R. J. J. Chem. Phys. 1992, 96, 6796. doi: 10.1063/1.462472
[18]
27 BEGDB online database, http://http://www.begdb.com/(accessed Mar 1, 2016).
[19]
4 Frey J. A. ; Leutwyler S. Chim. Int. J. Chem 2005, 59, 511. doi: 10.2533/000942905777676245
[20]
7 Grimme S. ; Antony J. ; Ehrlich S. ; Krieg H. J. Chem. Phys. 2010, 132, 154104. doi: 10.1063/1.3382344
[21]
14 Rezac J. ; Riley K. E. ; Hobza P. J. Chem. Theory Comput. 2011, 7, 2427. doi: 10.1021/ct200294
[22]
15 Sedlak R. ; Janowski T. ; Pitonak M. ; Rezac J. ; Pulay P. ; Hobza P. J. Chem. Theory Comput 2013, 9, 3364. doi: 10.1021/ct400036b
[23]
16 Wang W. Z. ; Sun T. ; Zhang Y. ; Wang Y. B. J. Chem. Phys. 2015, 143, 4145. doi: 10.1063/1.4931121
[24]
17 Su P. ; Li H. J. Chem. Phys 2009, 131, 014102. doi: 10.1063/1.3159673
[25]
18 Jurecak P. ; Sponer J. ; Cemy J. ; Hobza P. Phys. Chem. Chem. Phys 2006, 8, 1985. doi: 10.1039/b600027d
[26]
19 Takatani T. ; Hohenstein E. G. ; Malagoli M. ; Marshall M. S. ; Sherrill C. D. J. Chem. Phys 2010, 132, 1290. doi: 10.1063/1.3378024
[27]
26 Boys S. F. ; Bernardi F. Mol. Phys 1970, 19, 553. doi: 10.1080/00268977000101561