全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201608304

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过两步法合成铜掺杂的氧化锌纳米棒,通过X射线衍射(XRD)、扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)和紫外-可见(UV-Vis)分光光谱等技术对系列样品进行了表征,研究并探索了铜掺杂的氧化锌纳米棒光降解染料罗丹明B(RhB)和气体乙醛的催化活性。通过对多孔Cu掺杂ZnO纳米棒光催化分解乙醛进行了评价。多孔Cu掺杂ZnO纳米棒(CZ-5)光催化剂具有最高的催化分解乙醛的能力,比其它多孔Cu掺杂ZnO纳米棒具有很高的催化活性。多孔Cu掺杂ZnO纳米棒光催化剂在室温下在可见光(435 nm)下照射16 h,5.50×10-4(φ,体积分数)的乙醛气体完全降解为二氧化碳(CO2)。多孔铜掺杂的氧化锌纳米棒光催化剂的光催化性能的改善主要归因于铜和氧化锌纳米棒之间的协同作用。这种改进的光催化协同作用归因于Cu掺杂ZnO的可见光吸收的延伸和光生电子空穴对的抗重组。
A two-step method was developed for the selective synthesis of porous ZnO nanorods (undoped and Cu doped):first, Zn[C6H4(COO)2]·H2O and Cu doped Zn[C6H4(COO)2]·H2O nanorods were synthesized via the hydrothermal reaction of Zn(NO3)2·6H2O, NaOH, KHC8H4O4, and Cu(NO3)2·3H2O at 120℃ for 6 h; second, porous undoped and doped ZnO nanorods were obtained by thermal decomposition of the precursors in air at 500℃ for 2 h, respectively. The porous ZnO nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic degradation of rhodamine B (RhB) aqueous solution shows that the porous Cu-doped ZnO nanorods have the highest photodegradation performance with visible light and acetaldehyde (CH3CHO) gas degradation. These results are because of the special interface structures of the catalysts and fast separation of its photogenerated charge carriers. These favorable photocatalytic properties of the doped microstructures demonstrate their potential for degradation of wastewater and aldehydes

References

[1]  3 Liao Y. C. ; Xie C. S. ; Liu Y. ; Chen H. ; Li H. Y. ; Wu J. Ceram. Int. 2012, 38, 4437. doi: 10.1016/j.ceramint.2012.03.016
[2]  39 Macwan D. P. ; Dave P. N. ; Chaturvedi S. J. Mater. Sci. 2011, 46, 3669. doi: 10.1007/s10853-011-5378-y
[3]  5 Yang L. P. ; Liu Z. Y. ; Shi J.W. ; Zhang Y. Q. ; Hu H. ; Shang W. F. Sep. Purif. Technol 2007, 54, 204. doi: 10.1016/j.seppur.2006.09.003
[4]  7 Zhang L. ; Fu H. ; Zhang C. ; Zhu Y. J. Solid State Chem. 2006, 179, 804. doi: 10.1016/j.jssc.2005.12.003
[5]  8 Zhou J. ; Mullins D. R. Surf. Sci. 2006, 600, 1540. doi: 10.1016/j.susc.2006.02.009
[6]  9 Zhu Y. ; Yu F. ; Man Y. ; Tian Q. ; He Y. ; Wu N. J. Solid State Chem. 2005, 178, 224. doi: 10.1016/j.jssc.2004.11.015
[7]  11 Zhao W. ; Ma W. ; Chen C. ; Zhao J. ; Shuai Z. J. Am. Chem. Soc. 2004, 126, 4782. doi: 10.1021/ja0396753
[8]  14 Bu Y. Y. ; Chen Z. Y. RSC Adv. 2014, 4, 45397. doi: 10.1039/C4RA06641C
[9]  17 Akpan U. G. ; Hameed B. H. J. Hazard. Mater. 2009, 170, 520. doi: 10.1016/j.jhazmat.2009.05.039
[10]  郭庆; 周传耀; 马志博; 任泽峰; 樊红军; 杨学明. 物理化学学报, 2016, 32, 28. doi: 10.3866/PKU.WHXB201512081
[11]  10 Sakatani Y. ; Ando H. ; Okusako K. ; Koike H. ; Nunoshige J. ; Takata T. ; Kondo J. N. ; Hara M. ; Domen K. J. Mater. Res. 2004, 19, 2100. doi: 10.1557/JMR.2004.0269
[12]  15 Bettinelli M. ; Dallacasa V. ; Falcomer D. ; Fornasiero P. ; Gombac V. ; Montini T. ; Romano L. ; Speghini A. J. Hazard. Mater. 2007, 146, 529. doi: 10.1016/j.jhazmat.2007.04.053
[13]  16 Yang X. ; Cao C. ; Hohn K. ; Erickson L. ; Maghirang R. ; Hamal D. ; Klabunde K. J. Catal. 2007, 252, 296. doi: 10.1016/j.jcat.2007.09.014
[14]  18 Hayata K. ; Gondalb M. A. ; Khaleda M. M. ; Ahmedc S. ; Shemsi A. M. Appl. Catal. A: Gen. 2011, 393, 122. doi: 10.1016/j.apcata.2010.11.032
[15]  19 Chen S. F. ; Zhao W. ; Liu W. ; Zhang S. J. Appl. Surf. Sci. 2008, 255, 2478. doi: 10.1016/j.apsusc.2008.07.115
[16]  28 Rajneesh M. ; Karthikeyan K. ; Sang-Jae K. Solid State Commun. 2012, 152, 375. doi: 10.1016/j.ssc.2011.12.008
[17]  29 Sahu D. ; Panda N. R. ; Acharya B. S. ; Panda A. K. Ceram. Int. 2014, 40, 11041. doi: 10.1016/j.ceramint.2014.03.119
[18]  30 Yang M. Q. ; He J. H. J. Colloid Interface Sci. 2011, 355, 15. doi: 10.1016/j.jcis.2010.11.022
[19]  31 Li X. J. ; Sheng J. Y. ; Chen H. H. ; Xu Y. M. Acta Phys. -Chim. Sin. 2015, 31, 540. doi: 10.3866/PKU.WHXB201501131
[20]  1 Ai Z. H. ; Huang Y. ; Lee S. C. ; Zhang L. Z. J. Alloy. Compd. 2011, 509, 2044. doi: 10.1016/j.jallcom.2010.10.132
[21]  2 Guo Q. ; Zhou C. Y. ; Ma Z. B. ; Ren Z. F. ; Fan H. J. ; Yang X. M. Acta Phys. -Chim. Sin. 2016, 32, 28. doi: 10.3866/PKU.WHXB201512081
[22]  4 Tian H. ; He J. H. ; Liu L. L. ; Wang D. H. ; Hao Z. P. ; Ma C. Y. Microporous Mesoporous Mat. 2012, 151, 397. doi: 10.1016/j.micromeso.2011.10.003
[23]  38 Liu Y. ; Zhao N. ; Gao W. RSC Adv. 2013, 3, 21666. doi: 10.1039/c3ra42902d
[24]  6 You Y. ; Zhang S. Y. ; Wan L. ; Xu D. F. Appl. Surf. Sci. 2012, 258, 3469. doi: 10.1016/j.apsusc.2011.11.099
[25]  12 Sakatani Y. ; Nunoshige J. ; Ando H. ; Okusako K. ; Koike H. ; Takata T. ; Kondo J. N. ; Hara M. ; Domen K. Chem. Lett. 2003, 32, 1156. doi: 10.1246/cl.2003.1156
[26]  13 Li X. K. ; Ma D. D. ; Zheng Y. P. ; Zhang H. ; Ding D. ; Chen M. S. ; Wan H. L. Acta Phys. -Chim. Sin. 2015, 31, 1753. doi: 10.3866/PKU.WHXB201507091
[27]  李晓坤; 马冬冬; 郑燕萍; 张宏; 丁丁; 陈明树; 万惠霖. 物理化学学报, 2015, 31, 1753. doi: 10.3866/PKU.WHXB201507091
[28]  25 Xue H. ; Chen Y. ; Xu X. L. ; Zhang G. H. ; Zhang H. ; Ma S. Y. Phys. E 2009, 41, 788. doi: 10.1016/j.physe.2008.12.017
[29]  李晓金; 盛珈怡; 陈海航; 许宜铭. 物理化学学报, 2015, 31, 540. doi: 10.3866/PKU.WHXB201501131
[30]  32 Pawar R. C. ; Choi D. H. ; Lee J. S. ; Lee C. S. Mater. Chem. Phys. 2015, 151, 167. doi: 10.1016/j.matchemphys.2014.11.051
[31]  33 Yang M. ; He J. J. Colloid Interface Sci. 2011, 355, 15. doi: 10.1016/j.jcis.2010.11.022
[32]  34 Zhang Y. ; Chen L. ; Zheng Z. ; Yang F. Solid State Sci. 2009, 11, 1265. doi: 10.1016/j.solidstatesciences.2009.03.018
[33]  35 Segal S. R. ; Suib S. L. ; Foland L. Chem. Mater. 1997, 9, 2526. doi: 10.1021/cm9702934
[34]  36 Zhang W. ; Yang Z. ; Wang X. ; Zhang Y. ; Wen X. ; Yang S. Catal. Commun. 2006, 7, 408. doi: 10.1016/j.catcom.2005.12.008
[35]  37 Chu F. H. ; Huang C.W. ; Hsin C. L. ; Wang C.W. ; Yu S. Y. ; Ye P.H. ; Wu W. W. Nanoscale 2012, 4, 1471. doi: 10.1039/c1nr10796h
[36]  20 Rehman S. ; Ullah R. ; Butt A. M. ; Gohar N. D. J. Hazard. Mater. 2009, 170, 560. doi: 10.1016/j.jhazmat.2009.05.064
[37]  21 Xu C. ; Cao L. ; Su G. ; Liu W. ; Qu X. ; Yu Y. J. Alloy. Compd. 2010, 497, 373. doi: 10.1016/j.jallcom.2010.03.076
[38]  22 Dindar B. ; I?li S. J. Photochem. Photobiol. A: Chem. 2001, 140, 263. doi: 10.1016/S1010-6030(01)00414-2
[39]  23 Yu J. Y. ; Zhuang S. D. ; Xu X. Y. ; Zhu W. C. ; Feng B. ; Hu J. G. J. Mater. Chem. A 2015, 3, 1199. doi: 10.1039/c4ta04526b
[40]  24 Liang G. F. ; Hu L.W. ; Feng W. P. ; Li G. D. ; Jing A. H. Appl. Surf. Sci. 2014, 296, 158. doi: 10.1016/j.apsusc.2014.01.065
[41]  26 Kamalianfar A. ; Halim S. A. ; Azak K. Ceram. Int. 2014, 40, 3193. doi: 10.1016/j.ceramint.2013.09.123
[42]  27 Guo Q. ; Minton T. K. ; Yang X. M. Chin. J. Catal 2015, 36, 1649. doi: 10.1016/S1872-206760935-4
[43]  郭庆; MintonT.K.; 杨学明. 催化学报, 2015, 36, 1649. doi: 10.1016/S1872-206760935-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133