全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201801101

Full-Text   Cite this paper   Add to My Lib

Abstract:

The kernel energy method (KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries. KEM breaks a molecule into smaller subsets, called kernels, for the purposes of calculation. The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy. A generalization of the kernel expansion to density matrices provides the full molecule density matrix and orbitals. In this study, the kernel expansion for the density matrix is examined in the context of density functional theory (DFT) Kohn-Sham (KS) calculations. A kernel expansion for the one-body density matrix analogous to the kernel expansion for energy is defined, and is then converted into a normalized projector by using the Clinton algorithm. Such normalized projectors are factorizable into linear combination of atomic orbitals (LCAO) matrices that deliver full-molecule Kohn-Sham molecular orbitals in the atomic orbital basis. Both straightforward KEM energies and energies from a normalized, idempotent density matrix obtained from a density matrix kernel expansion to which the Clinton algorithm has been applied are compared to reference energies obtained from calculations on the full system without any kernel expansion. Calculations were performed both for a simple proof-of-concept system consisting of three atoms in a linear configuration and for a water cluster consisting of twelve water molecules. In the case of the proof-of-concept system, calculations were performed using the STO-3G and 6-31G(d, p) bases over a range of atomic separations, some very far from equilibrium. The water cluster was calculated in the 6-31G(d, p) basis at an equilibrium geometry. The normalized projector density energies are more accurate than the straightforward KEM energy results in nearly all cases. In the case of the water cluster, the energy of the normalized projector is approximately four times more accurate than the straightforward KEM energy result. The KS density matrices of this study are applicable to quantum crystallography.
The kernel energy method (KEM) has been shown to provide fast and accurate molecular energy calculations for molecules at their equilibrium geometries. KEM breaks a molecule into smaller subsets, called kernels, for the purposes of calculation. The results from the kernels are summed according to an expression characteristic of KEM to obtain the full molecule energy. A generalization of the kernel expansion to density matrices provides the full molecule density

References

[1]  4 Huang L. ; Massa L. ; Karle J. Int. J. Quantum Chem. 2005, 103, 808. doi: 10.1002/qua.20542
[2]  9 Huang L. ; Bohorquez H. J. ; Matta C. F. ; Massa L. Int. J. Quantum Chem. 2011, 111, 4150. doi: 10.1002/qua.22975
[3]  5 Huang L. ; Massa L. ; Karle J. Proc. Nat. Acad. ScUSA 2005, 102, 12690. doi: 10.1073/pnas.0506378102
[4]  6 Huang L. ; Matta C. ; Massa L. Struct. Chem. 2015, 26, 1433. doi: 10.1007/s11224-015-0661-1
[5]  8 Huang L. ; Massa L. ; Matta C. F. Carbon 2014, 76, 310. doi: 10.1016/j.carbon.2014.04.082
[6]  13 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Robb M. A. ; Scalmani G. ; Barone V. ; Mennucci B. ; Petersson G. A. ;et al Gaussian 09, Revision D.01; Gaussian Inc.: Wallingford, CT, USA 2009.
[7]  15 Huang L. ; Massa L. ; Karle J. ; Matta C. F. Quantum Biochemistry; Wiley-VCH, Verlag GmbH & Co. KGaA: Weinheim, Germany 2010, chap. 1.
[8]  16 Grabowsky S. ; Genoni A. ; Bürgi H. -B. Chem. Sci. 2017, 8, 4159. doi: 10.1039/C6SC05504D
[9]  17 Jayatilaka D. ; Gatti C. ; Piero M. Modern Charge-Density Analysis; Springer: The Netherlands 2012, chap. 6.
[10]  1 Weiss S. N. ; Huang L. ; Massa L. J. Comput. Chem. 2010, 31, 2889. doi: 10.1002/jcc.21584
[11]  2 Huang L. ; Massa L. ; Karle J. Biochemistry 2005, 44, 16747. doi: 10.1021/bi051655l
[12]  3 Huang L. ; Massa L. ; Karle J. Proc. Nat. Acad. ScUSA 2006, 103, 1233. doi: 10.1073/pnas.0510342103
[13]  7 Timm M. J. ; Matta C. F. ; Massa L. ; Huang L. J. Phys. CheA 2014, 118, 11304. doi: 10.1021/jp508490p
[14]  10 Polkosnik W. ; Massa L. J. Comput. Chem. 2017. doi: 10.1002/jcc.25064
[15]  11 Clinton W. L. ; Massa L. J. Phys. Rev. Lett. 1972, 29, 1363. doi: 10.1103/PhysRevLett.29.1363
[16]  12 L?wdin P. -O. Phys. Rev. 1955, 97, 1474. doi: 10.1103/PhysRev.97.1474
[17]  14 Maheshwary S. ; Patel N. ; Sathyamurthy N. ; Kulkarni A. D. ; Gadre S. R. J. Phys. Chem. A 2001, 105, 10525. doi: 10.1021/jp013141b

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133