全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 


DOI: 10.3866/PKU.WHXB201711222

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着太阳能、风能等可再生能源发电并网普及应用和智能电网建设,储能技术成为能源优化利用的核心技术之一。水系钠离子电池具有资源丰富、价格低廉等优势,作为未来电网储能的重要选择而成为近年来电化学储能技术前沿的研究热点。由于受到水的热力学电化学窗口限制及嵌钠反应的特殊性(例如溶液的pH值、氧的溶解等),以及容量、电化学电位、适应性及催化效应等,电极材料选择面临挑战,进而影响水系钠离子电池的应用。因此,电极材料成为水系钠离子电池的研究重点。本文简要概括了水系钠离子电池的特点,并对氧化物、聚阴离子化合物、普鲁士蓝类似物和有机物等电极材料体系的最新研究进展进行了总结,并概括了将来的发展方向,为推动水系钠离子电池的发展和能源优化研究奠定了基础。
With solar, wind, and other types of renewable energy incorporated into electrical grids and with the construction of smart grids, energy storage technology has become essential to optimize energy utilization. Due primarily to its abundance and low cost, aqueous rechargeable sodium-ion batteries (ARSBs) have received increasing attention in the field of electrochemical energy storage technology, and represent a promising alternative to energy storage in future power grids. However, because of the limitations of the thermodynamics of electrochemical processes in water, reactions in aqueous solution are more complicated compared to an organic system. Many parameters must be taken into account in an aqueous system, such as electrolyte concentration, dissolved oxygen content, and pH. As a result, it is challenging to select an appropriate electrode material, whose capacity, electrochemical potential, adaptability, and even catalytic effect may seriously affect the battery performance and hamper its application. Therefore, the development of advanced electrode materials, which can suppress side reactions of the battery and have good electrochemical performance, has become the focus of ARSB research. This paper briefly discusses the characteristics of ARSBs and summarizes the latest research progress in the development of electrode materials, including oxides, polyanionic compounds, Prussian blue analogues, and organics. This review also discusses the challenges remaining in the development of ARSBs, and suggests several ways to solve them, such as by using multivalent ions, hybridized electrolytes, etc., and speculates about future research directions. The studies and concepts discussed herein will advance the development of ARSBs and promote the optimization of energy utilization

References

[1]  6 Fang Y. J. ; Chen Z. X. ; Ai X. P. ; Yang H. X. ; Cao Y. L. Acta Phys. -Chim. Sin. 2017, 33, 211. doi: 10.3866/PKU.WHXB201610111
[2]  方永进; 陈重学; 艾新平; 杨汉西; 曹余良. 物理化学学报, 2017, 33, 211. doi: 10.3866/PKU.WHXB201610111
[3]  11 Li W. ; Dahn J. R. ; Wainwright D. S. Science 1994, 264, 1115. doi: 10.1126/science.264.5162.1115
[4]  蓸翊; 王永刚; 张青; 张兆勇; 车勇; 夏永姚; 戴翔. 储能科学与技术, 2016, 5, 317. doi: 10.3969/j.issn.2095-4239.2016.03.008
[5]  17 Hill L. I. ; Verbaere A. ; Guyomard D. J. Power Sources 2003, 119-121, 226. doi: 10.1016/S0378-7753(03)00238-6
[6]  18 Cao J. ; Mao Q. H. ; Shi L. ; Qian Y. T. J. Mater. Chem. 2011, 21, 16210. doi: 10.1039/C1JM10862J
[7]  19 Kitchaev D. A. ; Dacek S. T. ; Sun W. H. ; Ceder G. J. Am. Chem. Soc. 2017, 139, 2672. doi: 10.1021/jacs.6b11301
[8]  20 Tarascon J. M. ; Guyomard D. G. ; Wilkens B. ; Mc Kinnon W. R. ; Barboux P. Solid State Ionics 1992, 57, 113. doi: 10.1016/0167-2738(92)90072-W
[9]  21 Kanoh H. ; Tang W. ; Makita Y. ; Ooi K. Langmuir 1997, 13, 6845. doi: 10.1021/la970767d
[10]  22 Athouel L. ; Moser F. ; Dugas R. ; Crosnier O. ; Belanger D. ; Brousse T. J. Phys. Chem. C 2008, 112, 7270. doi: 10.1021/jp0773029
[11]  23 Athouel L. ; Moser F. ; Dugas R. ; Crosnier O. ; Belanger D. ; Brousse T. ECS Trans. 2008, 16, 119. doi: 10.1149/1.2985634
[12]  24 Shao J. ; Li X. Y. ; Qu Q. T. ; Wu Y. P. J. Power Sources 2013, 223, 56. doi: 10.1016/j.jpowsour.2012.09.046
[13]  25 Komaba S. ; Ogata A. ; Tsuchikawa T. Electrochem. Commun. 2008, 10, 1435. doi: 10.1016/j.elecom.2008.07.025
[14]  26 Minakshi M. Mater. Sci. Eng. B 2012, 177, 1788. doi: 10.1016/j.mseb.2012.09.003
[15]  27 Qu Q. T. ; Liu L. L. ; Wu Y. P. ; Holze R. Electrochim. Acta 2013, 96, 8. doi: 10.1016/j.electacta.2013.02.078
[16]  28 Sun X. Structures and Electrochemical Performances of Transition Metal Oxides NaMO2 as Electrode Materials for Sodium-Ion Batteries. Ph. D. Dissertation University of Science and Technology of China, Anhui 2016.
[17]  孙信. 过渡金属氧化物NaxMO2结构调控和储钠性能的研究 合肥:中国科学技术大学, 2016.
[18]  29 Su D. W. ; Wang C. Y. ; Ahn H. J. ; Wang G. X. Chem. Eur. J. 2013, 19, 10884. doi: 10.1002/chem.201301563
[19]  30 Liu Y. C. ; Chen C. C. ; Zhang N. ; Wang L. B. ; Xiang X. D. ; Chen J. J. Electrochem. 2016, 22, 437. doi: 10.13208/j.electrochem.160548
[20]  刘永畅; 陈程成; 张宁; 王刘彬; 向兴德; 陈军. 电化学, 2016, 22, 437. doi: 10.13208/j.electrochem.160548
[21]  31 Sauvage F. ; Baudrin E. ; Tarascon J. M. Sens. Actuators, B 2007, 120, 638. doi: 10.1016/j.snb.2006.03.024
[22]  32 Parant J. P. ; Olazcuaga R. ; Devalette M. ; Fouassier C. ; Hagenmuller P. J. Solid State Chem. 1971, 3, 1. doi: 10.1016/0022-4596(71)90001-6
[23]  33 Kim H. ; Kim D. J. ; Seo D. H. ; Yeom M. S. ; Kang K. ; Kim D. K. ; Jung Y. Chem. Mater. 2012, 24, 1205. doi: 10.1021/cm300065y
[24]  34 Kim D. J. ; Ponraj R. ; Kannan A. G. ; Lee H. W. ; Fathi R. ; Ruffo R. ; Mari C. M. ; Kim D. K. J. Power Sources 2013, 244, 758. doi: 10.1016/j.jpowsour.2013.02.090
[25]  37 Zhang B. H. ; Liu Y. ; Chang Z. ; Yang Y. Q. ; Wen Z. B. ; Wu Y. P. ; Holze R. J. Power Sources 2014, 253, 98. doi: 10.1016/j.jpowsour.2013.12.011
[26]  39 Zhang X. Q. ; Hou A. G. ; Li A. N. ; Liang A. W. ; Zhu Y. C. ; Qian Y. T. J. Mater. Chem. A 2016, 4, 856. doi: 10.1039/C5TA08857G
[27]  宋维鑫; 侯红帅; 纪效波. 物理化学学报, 2017, 33, 103. doi: 10.3866/PKU.WHXB201608303
[28]  49 Song W. W. ; Ji X. B. ; Zhu Y. ; Zhu H. J. ; Li F. Q. ; Chen J. ; Lu F. ; Yao Y. P. ; Banks C. E. ChemElectroChem 2014, 1, 871. doi: 10.1002/celc.201300248
[29]  50 Mason C. M. ; Lange F. ECS Electrochem. Lett. 2015, 4, A79. doi: 10.1149/2.0011508eel
[30]  56 Li Z. ; Ravnsbaek D. B. ; Xiang K. B. ; Chiang Y. M. Electrochem. Commun. 2014, 44, 12. doi: 10.1016/j.elecom.2014.04.003
[31]  57 Minakshi M. ; Meyrick D. J. Alloys Compd. 2013, 555, 10. doi: 10.1016/j.jallcom.2012.11.203
[32]  58 Minakshi M. ; Meyrick D. ; Appadoo D. Energ. Fuel. 2013, 27, 3516. doi: 10.1021/ef400333s
[33]  63 Kumar P. R. ; Jung Y. H. ; Moorthy B. ; Kim D. K. J. Electrochem. Soc. 2016, 163, A1484. doi: 10.1149/2.0031608jes
[34]  64 Jung Y. H. ; Lim C. H. ; Kim J. H. ; Kim D. K. RSC Adv. 2014, 4, 9799. doi: 10.1039/C3RA47560C
[35]  89 Xia X. F. ; Hao Q. L. ; Lei W. ; Wang W. J. ; Wang H. L. ; Wang X. J. Mater. Chem. 2012, 22, 8314. doi: 10.1039/C2JM16216D
[36]  94 Pang G. ; Yuan C. A. ; Nie P. ; Ding B. ; Zhu J. J. ; Zhang X. G. Nanoscale 2014, 6, 6328. doi: 10.1039/C3NR06730K
[37]  96 Park S. ; II ; Gocheva I. ; Okada S. ; Yamaki J. I. J. Electrochem. Soc. 2011, 158, A1067. doi: 10.1149/1.3611434
[38]  97 Arun N. ; Aravindan V. ; Ling W. C. ; Madhavi S. J. Alloys Compd. 2014, 603, 48. doi: 10.1016/j.jallcom.2014.03.059
[39]  98 Mohamed A. I. ; Whitacre J. F. Electrochim. Acta 2017, 235, 730. doi: 10.1016/j.electacta.2017.03.106
[40]  99 Wu W. ; Mohamed A. ; Whitacre J. F. J. Electrochem. Soc. 2013, 160, A497. doi: 10.1149/2.054303jes
[41]  105 He Y. W. ; Yuan H. ; Wu Y. X. ; Chen C. ; Yang S. ; Ai C. C. Electrochemistry 2016, 84, 705. doi: 10.5796/electrochemistry.84.705
[42]  106 Ke L. L. ; Dong J. ; Lin B. ; Yu T. T. ; Wang H. F. ; Zhang S. ; Deng C. Nanoscale 2017, 9, 4183. doi: 10.1039/C7NR00793K
[43]  107 Minakshi M. ; Ralph D. ECS Trans. 2013, 45, 95. doi: 10.1149/04529.0095ecst
[44]  108 Pasta M. ; Wessells C. D. ; Liu N. ; Nelson J. ; McDowell M. T. ; Huggins R. A. ; Toney M. F. ; Cui Y. Nat. Commun. 2014, 5, 3007. doi: 10.1038/ncomms4007
[45]  109 Choi W. ; Harada D. ; Oyaizu K. ; Nishide H. J. Am. Chem. Soc. 2011, 133, 19839. doi: 10.1021/ja206961t
[46]  张宁; 刘永畅; 陈程成; 陶占良; 陈军. 无机化学学报, 2015, 31, 1739. doi: 10.11862/cjic.2015.258
[47]  13 Kim H. ; Hong J. ; Park K. Y. ; Kim H. ; Kim S. W. ; Kang K. Chem. Rev. 2014, 114, 11788. doi: 10.1021/cr500232y
[48]  14 Lu Y. ; Goodenough J. B. ; Kim Y. J. Am. Chem. Soc. 2011, 133, 5756. doi: 10.1021/ja201118f
[49]  16 Ghodbane O. ; Pascal J. L. ; Favie F. ACS Appl. Mater. Interfaces 2009, 1, 1130. doi: 10.1021/am900094e
[50]  44 Jung Y. H. ; Hong S. T. ; Kim D. K. J. Electrochem. Soc. 2013, 160, A897. doi: 10.1149/2.113306jes
[51]  46 Padhi A. K. ; Nanjundaswamy K. S. ; Masquelier C. ; Goodenough J. B. J. Electrochem. Soc. 1997, 144, 2581. doi: 10.1149/1.1837868
[52]  52 Vujkovic M. ; Mentus S. J. Power Sources 2014, 247, 184. doi: 10.1016/j.jpowsour.2013.08.062
[53]  53 Levi M. D. ; Sigalov S. ; Salitra G. ; Elazari R. ; Aurbach D. ; Daikhin L. ; Presser V. J. Phys. Chem. C 2013, 117, 1247. doi: 10.1021/jp3117819
[54]  54 Zhao Z. W. ; Si X. F. ; Liang X. X. ; Liu X. H. ; He L. H. Trans. Nonferrous Met. Soc. China 2013, 23, 1157. doi: 10.1016/S1003-6326(13)62578-9
[55]  55 Moreau P. ; Guyomard D. ; Gaubicher J. ; Boucher F. Chem. Mater. 2010, 22, 4126. doi: 10.1021/cm101377h
[56]  60 Vujkovic M. ; Mentus S. J. Power Sources 2016, 325, 185. doi: 10.1016/j.jpowsour.2016.06.031
[57]  62 Kumar P. R. ; Jung Y. H. ; Lim C. H. ; Kim D. K. J. Mater. Chem. A 2015, 3, 6271. doi: 10.1039/C5TA00980D
[58]  66 Bocarsly A. B. ; Sinha S. J. Electroanal. Chem. 1982, 140, 167. doi: 10.1016/0368-1874(82)85310-0
[59]  68 Kalwellis-Mohn S. ; Grabner E. W. Electrochim. Acta 1989, 34, 1265. doi: 10.1016/0013-4686(89)87169-5
[60]  69 Wessells C. D. ; Peddada S. V. ; Huggins R. A. ; Cui Y. Nano Lett. 2011, 11, 5421. doi: 10.1021/nl203193q
[61]  70 Wessells C. D. ; Peddada S. V. ; McDowell M. T. ; Huggins R. A. ; Cui Y. J. Electrochem. Soc. 2012, 159, A98. doi: 10.1149/2.060202jes
[62]  71 Wessells C. D. ; Huggins R. A. ; Cui Y. Nat. Commun. 2011, 2, 550. doi: 10.1038/ncomms1563
[63]  73 Wessells C. D. ; McDowell M. T. ; Peddada S. V. ; Pasta M. ; Huggins R. A. ; Cui Y. ACS Nano 2012, 6, 1688. doi: 10.1021/nn204666v
[64]  74 Kim D. J. ; Jung Y. H. ; Bharathi K. K. ; Je S. H. ; Kim D. K. ; Coskun A. ; Choi J. K. Energy Mater. 2014, 4, 1400133. doi: 10.1002/aenm.201400133
[65]  78 Wu X. Y. ; Luo Y. ; Sun M. Y. ; Qian J. F. ; Cao Y. L. ; Ai X. P. ; Yang H. X. Nano Energy 2015, 13, 117. doi: 10.1016/j.nanoen.2015.02.006
[66]  79 Chen L. ; Shao H. Z. ; Zhou X. F. ; Liu G. Q. ; Jiang J. ; Liu Z. P. Nat. Commun. 2016, 7, 11982. doi: 10.1038/ncomms11982
[67]  82 Lee J. H. ; Ali G. ; Kim D. H. ; Chung K. Y. Adv. Energy Mater. 2017, 7, 1601491. doi: 10.1002/aenm.201601491
[68]  83 Zhu Z. Q. ; Li H. ; Liang J. ; Tao Z. L. ; Chen J. Chem. Commun. 2015, 51, 1446. doi: 10.1039/C4CC08220F
[69]  84 Guo C. Y. ; Zhang K. ; Zhao Q. ; Pei L. K. ; Chen J. Chem. Commun. 2015, 51, 10244. doi: 10.1039/C5CC02251G
[70]  86 Koshika K. ; Sano N. ; Oyaizu K. ; Nishide H. Chem. Commun. 2009, 7, 836. doi: 10.1039/b818087c
[71]  88 Mai L. Q. ; Hu B. ; Chen W. ; Qi Y. Y. ; Lao C. S. ; Yang R. S. ; Dai Y. ; Wang Z. L. Adv. Mater. 2007, 19, 3712. doi: 10.1002/adma.200700883
[72]  90 Zhou L. ; Yang L. C. ; Yuan P. ; Zou J. ; Wu Y. P. ; Yu C. Z. J. Phys. Chem. C 2010, 114, 21868. doi: 10.1021/jp108778v
[73]  91 Deng C. ; Zhang S. ; Dong Z. ; Shang Y. Nano Energy 2014, 4, 49. doi: 10.1016/j.nanoen.2013.12.014
[74]  92 Vujkovic M. ; Paunkovic B. S. ; Simatovic I. S. ; Mitric M. ; Sequeira C. A. C. Mentus. S. Electrochim. Acta 2014, 147, 167. doi: 10.1016/j.electacta.2014.08.137
[75]  93 Wang Y. S. ; Liu J. ; Lee B. ; Qiao R. ; Yang Z. Z. ; Xu S. Y. ; Yu X. Q. ; Gu L. ; Hu Y. S. ; Yang W. L. ; et al Nat. Commun. 2015, 6, 6401. doi: 10.1038/ncomms7401
[76]  95 Delmas C. ; Cherkaoui F. ; Nadiri A. ; Hagenmuller P. Mater. Res. Bull. 1987, 22, 631. doi: 10.1016/0025-5408(87)90112-7
[77]  102 Li X. N. ; Zhu X. B. ; Liang J. W. ; Hou Z. G. ; Wang Y. ; Lin N. ; Zhu Y. C. ; Qian Y. T. J. Electrochem. Soc. 2014, 161, A1181. doi: 10.1149/2.0081409jes
[78]  103 Zhao B. D. ; Lin B. ; Zhang S. ; Deng C. Nanoscale 2015, 7, 18552. doi: 10.1039/C5NR06505d
[79]  110 Liang Y. L. ; Jing Y. ; Gheytani S. ; Lee K. Y. ; Liu P. ; Facchetti A. ; Yao Y. Nat. Mater. 2017, 16, 841. doi: 10.1038/nmat4919
[80]  111 Liu Y. ; Qiao Y. ; Zhang W. X. ; Wang H. ; Chen H. K. ; Zhu H. P. ; Li Z. ; Huang Y. H. J. Mater. Chem. A 2015, 3, 7780. doi: 10.1039/C5TA00396B
[81]  112 Li Z. ; Young D. ; Xiang K. ; Carter W. C. ; Chiang Y. M. Adv. Energy Mater. 2013, 3, 290. doi: 10.1002/aenm.201200598
[82]  113 Zhang Q. ; Liao C. Y. ; Zhai T. Y. ; Li H. Q. Electrochim. Acta 2016, 196, 470. doi: 10.1016/j.electacta.2016.03.007
[83]  1 Yang Z. ; Zhang J. ; Kintner-Meyer M. C. W. ; Lu X. ; Choi D. ; Lemmon J. P. ; Liu J. Chem. Rev. 2011, 111, 3577. doi: 10.1021/cr100290v
[84]  2 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741
[85]  3 Wen Y. ; He K. ; Zhu Y. J. ; Han F. D. ; Xu Y. H. ; Matsuda I. ; Ishii Y. ; Cumings J. ; Wang C.S. Nat. Commun. 2014, 5, 4033. doi: 10.1038/ncomms5033
[86]  4 Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691
[87]  5 Kundu D. ; Talaie E. ; Duffort V. ; Nazar L. F. Angew. Chem. Int. Ed. 2015, 54, 3431. doi: 10.1002/anie.201410376
[88]  杨汉西; 钱江锋. 无机材料学报, 2013, 28, 1165. doi: 10.3724/SP.J.1077.2013.13388
[89]  9 Zhang N. ; Liu Y. C. ; Chen C. C. ; Tao Z. L. ; Chen J. Chin. J. Inorg. Chem. 2015, 31, 1739. doi: 10.11862/cjic.2015.258
[90]  10 Tang W. ; Zhu Y. ; Hou Y. ; Liu L. ; Wu Y. ; Loh K. P. ; Zhang H. ; Zhu K. Energy Enviorn. Sci. 2013, 6, 2093. doi: 10.1039/C3EE24249H
[91]  12 Cao Y. ; Wang Y. G. ; Wang Q. ; Zhang Z. Y. ; Chen Y. ; Xia Y. Y. ; Dai X. Energy Storage Sci. Technol. 2016, 5, 317. doi: 10.3969/j.issn.2095-4239.2016.03.008
[92]  15 Luo J. Y. ; Cui W. J. ; He P. ; Xia Y. Y. Nat. Chem. 2010, 2, 760. doi: 10.1038/nchem.763
[93]  38 Tevar A. D. ; Whitacre J. F. J. Electrochem. Soc. 2010, 157, A870. doi: 10.1149/1.3428667
[94]  40 Yu F. ; Zhang S. M. ; Fang C. ; Liu Y. ; He S. Y. ; Xia J. ; Yang J. H. ; Zhang N. Ceram. Int. 2017, 43, 9960. doi: 10.1016/j.ceramint.2017.05.007
[95]  41 Liu Y. ; Qiao Y. ; Zhang W. ; Xu H. ; Li Z. ; Shen Y. ; Yuan L. ; Hu X. ; Dai X. ; Huang Y. H. Nano Energy 2014, 5, 97. doi: 10.1016/j.nanoen.2014.02.010
[96]  43 Wang Y. S. ; Mu L. Q. ; Liu J. ; Yang Z. Z. ; Yu X. Q. ; Gu L. ; Hu Y. S. ; Li H. ; Yang X. Q. ; Chen L. Q. et al. Adv. Energy Mater. 2015, 5, 1501005. doi: 10.1002/aenm.201501005
[97]  47 Tarascon J. M. ; Armand M. Nature 2001, 414, 359. doi: 10.1038/35104644
[98]  48 Song W. X. ; Hou H. S. ; Ji X. B. Acta Phys. -Chim. Sin. 2017, 33, 103. doi: 10.3866/PKU.WHXB201608303
[99]  51 Fernandez-Ropero A. J. ; Saurel D. ; Acebedo B. ; Rojo T. ; Casas-Cabanas M. J. Power Sources 2015, 291, 40. doi: 10.1016/j.jpowsour.2015.05.006
[100]  59 Deng C. ; Zhang S. ; Wu Y. X. Nanoscale 2015, 7, 487. doi: 10.1039/C4NR05175K
[101]  67 Itaya K. ; Uchida I. ; Neff V. D. Acc. Chem. Res. 1986, 19, 162. doi: 10.1021/ar00126a001
[102]  72 Pasta M. ; Wessells C. D. ; Huggins R. A. ; Cui Y. Nat. Commun. 2012, 3, 1149. doi: 10.1038/ncomms2139
[103]  75 Wu X. Y. ; Cao Y. L. ; Ai X. P. ; Qian J. F. ; Yang H. X. Electrochem. Commun. 2013, 31, 145. doi: 10.1016/j.elecom.2013.03.013
[104]  76 Wu X. Y. ; Sun M. Y. ; Shen Y. F. ; Qian J. F. ; Cao Y. L. ; Ai X. P. ; Yang H. X. ChemSusChem 2014, 7, 407. doi: 10.1002/cssc.201301036
[105]  77 Wu X. Y. ; Sun M. Y. ; Guo S. M. ; Qian J. F. ; Liu Y. ; Cao Y. L. ; Ai X. P. ; Yang H. X. ChemNanoMat 2015, 1, 188. doi: 10.1002/cnma.201500021
[106]  80 Li W. F. ; Zhang F. ; Xiang X. D. ; Zhang X. C. ChemElectroChem 2017, 4, 2870. doi: 10.1002/celc.201700776
[107]  81 Paulitsch B. ; Yun J. ; Bandarenka A. S. ACS Appl. Mater. Interfaces 2017, 9, 8107. doi: 10.1021/acsami.6b15666
[108]  85 Wang S. W. ; Wang L. J. ; Zhang K. ; Zhu Z. Q. ; Tao Z. L. ; Chen J. Nano Lett. 2013, 13, 4404. doi: 10.1021/nl402239p
[109]  87 Whitacre J. F. ; Tevar A. ; Sharma S. Electrochem. Commun. 2010, 12, 463. doi: 10.1016/j.elecom.2010.01.020
[110]  100 Wu W. ; Yan J. ; Wise A. ; Rutt A. ; Whitacre J. F. J. Electrochem. Soc. 2014, 161, A561. doi: 10.1149/2.059404jes
[111]  101 Pang G. ; Nie P. ; Yuan C. Z. ; Shen L. F. ; Zhang X. G. ; Zhu J. J. ; Ding B. Energy Technol. 2014, 2, 705. doi: 10.1002/ente.201402045
[112]  104 Hung T. F. ; Lan W. H. ; Yeh Y. W. ; Chang W. S. ; Yang C. C. ; Lin J. C. ACS Sustain. Chem. Eng. 2016, 4, 7074. doi: 10.1021/acssuschemeng.6b01962
[113]  7 Dong X. L. ; Chen L. ; Liu J. Y. ; Haller S. ; Wang Y. G. ; Xia Y. Y. Sci. Adv. 2016, 2, e1501038. doi: 10.1126/sciadv.1501038
[114]  8 Yang H. X. ; Qian J. F. J. Inorg. Mater. 2013, 28, 1165. doi: 10.3724/SP.J.1077.2013.13388
[115]  35 Liu X. ; Zhang N. ; Ni J. ; Gao L. J. Solid State Electrochem. 2013, 17, 1939. doi: 10.1007/s10008-013-2044-0
[116]  36 Dai K. ; Mao J. ; Song X. ; Battaglia V. ; Liu G. J. Power Sources 2015, 285, 161. doi: 10.1016/j.jpowsour.2015.03.087
[117]  42 Liu Y. ; Qiao Y. ; Lou X. F. ; Zhang X. H. ; Huang Y. H. ACS Appl. Mater. Inter. 2016, 8, 14564. doi: 10.1021/acsami.6b03089
[118]  45 Andersson A. S. ; Kalska B. ; Haggstrom L. ; Thomas J. O. Solid State Ionics 2000, 130, 41. doi: 10.1016/S0167-2738(00)00311-8
[119]  61 Qin H. ; Song Z. P. ; Zhan H. ; Zhou Y. H. J. Power Sources 2014, 249, 367. doi: 10.1016/j.jpowsour.2013.10.091
[120]  65 Bocarsly A. B. ; Sinha S. J. Electroanal. Chem. 1982, 137, 157. doi: 10.1016/0022-0728(82)85075-4
[121]  114 Whitacre J. F. ; Wiley T. ; Shanbhag S. ; Wenzhuo Y. ; Mohamed A. ; Chun S. E. ; Weber E. ; Blackwood D. ; Lynch-Bell E. ; Gulakowski J. ; et al J. Power Sources 2012, 213, 255. doi: 10.1016/j.jpowsour.2012.04.018
[122]  115 Liu Y. ; Zhang B. H. ; Xiao S. Y. ; Liu L. L. ; Wen Z. B. ; Wu Y. P. Electrochim. Acta 2014, 116, 512. doi: 10.1016/j.electacta.2013.11.077
[123]  116 Minakshi M. ; Meyrick D. Electrochim. Acta 2013, 101, 66. doi: 10.1016/j.electacta.2013.02.075
[124]  117 Hou Z. G. ; Li X. N. ; Liang J. W. ; Zhu Y. C. ; Qian Y. T. J. Mater. Chem. A 2015, 3, 1400. doi: 10.1039/C4TA06018K
[125]  118 Qu Q. T. ; Shi Y. ; Tian S. ; Chen Y. H. ; Wu Y. P. ; Holze R. J. Power Sources 2009, 194, 1222. doi: 10.1016/j.jpowsour.2009.06.068
[126]  119 Zhang B. H. ; Liu Y. ; Wu X. W. ; Yang Y. Q. ; Chang Z. ; Wen Z. B. ; Wu Y. P. Chem. Commun. 2014, 50, 1209. doi: 10.1039/c3cc48382g
[127]  120 Wang H. ; Zhang T. ; Chen C. ; Ling M. ; Lin Z. ; Zhang S. Q. ; Pan F. ; Liang C. D. Nano Res. 2017. doi: 10.1007/s12274-017-1657-5
[128]  121 Gao H. C. ; Goodenough J. B. Angew. Chem. Int. Ed. 2016, 128, 12960. doi: 10.1002/ange.201606508

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133