全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201601201

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用密度泛函理论方法,研究了钛硅分子筛Ti-MWW与H2O2所形成的钛氧活性中间体的结构,以及溶剂分子吸附对其几何结构和电子结构的影响。结果表明,骨架Ti与H2O2作用生成两种钛氧活性中间体,即五元环的Ti-η1-OOH和三元环的Ti-η2-OOH,骨架Ti中心可再吸附一个溶剂分子,形成六配位络合物结构,不同溶剂分子的吸附能力为H2O > CH3OH > CH3CN。两种钛氧活性中心与溶剂分子的吸附作用略有不同,表现为Ti-η1-OOH > Ti-η2-OOH,而Ti的落位也对吸附效应有很大影响, T1位点的Ti中心与溶剂分子的吸附作用明显强于T3位点的Ti中心。溶剂分子吸附还将影响活性氧的亲电性和催化活性。计算结果表明在Ti-η2-OOH活性中心吸附CH3CN可降低氯丙烯环氧化反应的活化能。
Density functional theory is used to study the structures of the Ti-peroxide species in a Ti-MWW/H2O2 system and the influence of the coordination with solvent molecules on the geometries and electronic features. The result indicated that the framework Ti can interact with H2O2 to form two kinds of Ti-peroxide species, the five-membered ring Ti-η1-OOH and the three-membered ring Ti-η2-OOH. The framework Ti center can further interact with solvent molecules of H2O, CH3OH, and CH3CN to form 6-coordinated complexes. The adsorption energies decreased as H2O > CH3OH > CH3CN. Both Ti-peroxide species display different adsorption capacity as Ti-η1-OOH > Ti-η2-OOH. The location of Ti also has a distinct effect on the adsorption. The central Ti at T1 prefers to adsorb solvent molecule over the Ti at T3. In addition, solvent adsorption also influences the electrophilicity of the active oxygen atom. The calculated results indicate that on the Ti-η2-OOH active center with adsorbed CH3CN, the activation energy of the epoxidation of chloropropene has been reduced

References

[1]  5 Leonowicz M. E. ; Lawton J. A. ; Lawton S. L. Science 1994, 264 (5167), 1910. doi: 10.1126/science.264.5167.1910
[2]  8 Wu P. ; Tatsumi T. ; Komatsu T. ; Yashima T. J. Catal 2001, 202 (2), 245. doi: 10.1006/jcat.2001.3278
[3]  9 Wu P. ; Tatsumi T. Chem. Commun 2001, 897 doi: 10.1039/B101426I
[4]  12 Wu P. ; Tatsumi T. Chem. Commun 2002, 22, 1026. doi: 10.1039/B201170K
[5]  21 Sever R. R. ; Root T.W. J. Phys. Chem. B 2003, 107, 4080. doi: 10.1021/jp026056s
[6]  22 Sever R. R. ; Root T.W. J. Phys. Chem. B 2003, 107, 4090. doi: 10.1021/jp026057k
[7]  23 To J. ; Sokol A. A. ; French S. A. ; Catlow C. R. A. J. Phys. Chem. C 2008, 112, 7173. doi: 10.1021/jp066448p
[8]  24 Wang Z. Q. ; Sun W. J. ; Chu W. ; Yu L. J.; Chin J. Phys. Chem 2011, 27 (2), 322. doi: 10.3866/PKU.WHXB20110218
[9]  王志强; 孙文晶; 储伟; 余良军. 物理化学学报, 2011, 27 (2), 322. doi: 10.3866/PKU.WHXB20110218
[10]  25 Wu P. ; Nuntasri D. ; Ruan J. F. ; Liu Y. M. ; He M. Y. ; Fan W. B. ; Terasaki O. ; Tatsumi T. J. Phys. Chem. B 2004, 108 (50), 19126. doi: 10.1021/jp037459a
[11]  26 Zhou D. H. ; Zhang H. J. ; Zhang J. J. ; Sun X. M. ; Li H. C. ; He N. ; Zhang W. P. Microporous Mesoporous Mat 2014, 195, 216. doi: 10.1016/j.micromeso.2014.04.037
[12]  李娜,蒋艳娇,乔溢铭,周丹红.无机化学学报, 2015, 31 (5), 901. doi: 10.11862/CJIC.2015.124
[13]  28 Qiao Y. M. ; Fan Z. L. ; Jiang Y. J. ; Li N. ; Dong H. ; He N. ; Zhou D. H. Chin. J. Catal 2015, 36, 1733. doi: 10.1016/S1872-2067(15)60900-7
[14]  31 Zhao Y. ; Truhlar D. G. J. Chem. Phys 2006, 125, 194101. doi: 10.1063/1.2370993
[15]  2 Arends I.W. C. E. ; Sheldon R. A. ; Wallau M. ; Schuchardt U. Angew. Chem. Int. Ed. Engl 1997, 36, 1144. doi: 10.1002/anie.199711441
[16]  6 Wu P. ; Tatsumi T. ; Komatsu T. ; Yashima T. Chem. Lett 2000, 29 (7), 774. doi: 10.1246/cl.2000.774
[17]  13 Wang L. L. ; Liu Y. M. ; Xie W. ; Zhang H. J. ; Wu H. H. ; Jiang Y.W. ; He M. Y. ; Wu P. J. Catal 2007, 246, 205. doi: 10.1016/j.jcat.2006.12.003
[18]  14 Wang L. L. ; Liu Y. M. ; Zhang H. J. ; Wu H. H. ; Jiang Y.W. ; Wu P. ; He M. Y. Chin. J. Catal 2006, 27 (8), 656. doi: 10.1016/S1872-2067(06)60036-3
[19]  汪玲玲; 刘月明; 张海娇; 吴海虹; 蒋咏文; 吴鹏; 何鸣元. 催化学报, 2006, 27 (8), 656. doi: 10.1016/S1872-2067(06)60036-3
[20]  高焕新; 卢文奎; 陈庆龄. 催化学报, 2002, 23 (1), 3.
[21]  16 Fan W. B. ; Wu P. ; Tatsumi T. J. Catal 2008, 256, 62. doi: 10.1016/j.jcat.2008.03.001
[22]  17 Clerici, M. G. Top. Catal. 2001, 15, 257. doi: 10.1023/A:1016614218678
[23]  乔溢铭; 范志琳; 蒋艳娇; 李娜; 董浩; 贺宁; 周丹红. 催化学报, 2015, 36, 1733. doi: 10.1016/S1872-2067(15)60900-7
[24]  29 Becke A. D. Phys. Rev. A 1988, 38 (6), 3098. doi: 10.1103/PhysRevA.38.3098
[25]  30 Lee C. ; Yang W. T. ; Parr R. G. Phys. Rev. B 1988, 37 (2), 785. doi: 10.1103/PhysRevB.37.785
[26]  33 Lendvay G. ; Mayer I. Chem. Phys. Lett 1998, 297 (5-6), 365. doi: 10.1016/S0009-2614(98)01191-9
[27]  34 Bordiga S. ; Damin A. ; Bonino F. ; Zecchina A. ; Spano G. ; Rivetti F. ; Bolis V. ; Prestipino C. ; Lamberti C. J. Phys. Chem. B 2002, 106 (38), 9892. doi: 10.1021/jp026106t
[28]  1 Notari B. Adv. Catal 1996, 41, 253. doi: 10.1016/S0360-0564(08)60042-5
[29]  3 Taramasso M. ; Perego G. ; Notari B. Perparation of Porous Crystalline Synthetic Material Comprised of Silicon and Titanium. US Patent 4410501 1983.
[30]  4 Bellussi, G.; Rigutto, M. S. Stud. Surf. Sci. Catal. 2001, 137, 911. doi: 10.1016/S0167-2991(01)80261-5
[31]  7 Wu P. ; Tatsumi T. ; Komatsu T. ; Yashima T. J. Phys. Chem. B 2001, 105 (15), 2897. doi: 10.1021/jp002816s
[32]  10 Wu P. ; Tatsumi T. J. Phys. Chem. B 2002, 106, 748. doi: 10.1021/jp0120965
[33]  11 Wu P. ; Tatsumi T. J. Catal 2003, 214 (2), 317. doi: 10.1016/S0021-9517(02)00170-7
[34]  15 Gao H. X. ; Lu W. K. ; Chen Q. L. Chin. J. Catal 2002, 23 (1), 3.
[35]  18 Notari B. Catal. Today 1993, 18, 163. doi: 10.1016/0920-5861(93)85029-Y
[36]  19 Clerici M. G. Appl. Catal 1991, 68, 249. doi: 10.1016/S0166-9834(00)84106-8
[37]  20 Sinclair P. E. ; Catlow C. R. A. J. Phys. Chem. B 1999, 103, 1084. doi: 10.1021/jp9821679
[38]  27 Li, N.; Jiang, Y. J.; Qiao, Y. M.; Zhou, D. H. Chin. J. Inorg. Chem. 2015, 31 (5), 901.
[39]  32 Frisch M. J. ; Trucks G.W. ; Schlegel H. B. ; et al 01; Gaussian Inc.:Wallingford, CT 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133