全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201601221

Full-Text   Cite this paper   Add to My Lib

Abstract:

金属硫化物富勒烯是一类结构新奇的化合物,阐释其结构和性质是当前的重要研究任务。本文采用密度泛函理论(DFT)方法,系统研究了质谱实验已经检测到的内嵌金属富勒烯Sc2S@C86的结构和性质。结果显示,能量最低的异构体是Sc2S@C86:63751(独立五元环规则(IPR)-9),该碳笼与已报道的Sc2C2@C86的碳笼一样;其次是non-IPR Sc2S@C86:63376。自然键轨道(NBO)和分子中原子理论(AIM)分析显示,内嵌团簇与碳笼间存在电荷转移相互作用和共价作用。温度效应计算显示,高温时Sc2S@C86是多个异构体共存的。为了对将来实验结构测定提供参考,本文提供了能量最低的两个异构体的红外光谱图。
Metallic sulfide fullerenes are compounds with novel structures. Currently, it is an important task to clarify the structures and properties of metallic sulfide fullerenes. Asystematic study is performed on Sc2S@C86 by the density functional theory (DFT) method. The calculated results show that the lowest-energy isomer is IPR-satisfying Sc2S@C86:63751 (the 9th isomer of C86 in the isolated pentagon rule (IPR)-only sequence), sharing the same cage with Sc2C2@C86. The second lowest energy isomer is not an isolated-pentagon-rule (non-IPR) Sc2S@C86:63376. Natural bond orbit (NBO) and theory of atoms in molecules (AIM) analyses show that there are charge transfer and covalent interactions between the encaged cluster and parent cage. The effect of temperature on the concentration is evaluated and the results show that several isomers of Sc2S@C86 may coexist at the high temperature conditions used for producing metallofullerenes. The IR spectra of the two lowest energy isomers are provided to help experimentally identify the structure of Sc2S@C86 in the future

References

[1]  1 Popov A. A. ; Yang S. Chem. Rev. 2013, 113, 5989. doi: 10.1021/cr300297r
[2]  2 Chai Y. ; Guo T. ; Jin C. ; Haufler R. E. ; Chibante L. P. F. ; Fure J. ; Wang L. ; Alford J. M. J. Phys. Chem. 1991, 95, 7564.
[3]  3 Akasaka, T.; Nagase, S. Endofullerenes: A New Family of Carbon Clusters; Kluwer Academic: Dordrecht, 2002; pp 1-11.
[4]  9 Dunsch L. ; Yang S. F. Phys. Chem. Chem. Phys. 2007, 9, 3067. doi: 10.1039/b704143h
[5]  13 Inakuma M. ; Kato H. ; Taninaka A. ; Shinohara H. ; Enoki T. J. Phys. Chem. B 2003, 107, 6965. doi: 10.1021/jp0275600
[6]  17 Dunsch L. ; Yang S. F. ; Zhang L. ; Svitova A. ; Oswald S. ; Popov A. A. J. Am. Chem. Soc. 2010, 132, 5413. doi: 10.1021/ja909580j
[7]  18 Chen N. ; Chaur M. N. ; Moore C. ; Pinzón J. R. ; Valencia R. ; Rodríguez-Fortea A. ; Poblet J. M. ; Echegoyen L. Chem. Commun. 2010, 46, 4818. doi: 10.1039/c0cc00835d
[8]  20 Campbell E. E. B. ; Fowler P.W. ; Mitchell D. ; Zerbetto F. Chem. Phys. Lett. 1996, 250, 544. doi: 10.1016/0009-2614(96)00055-3
[9]  21 Albertazzi E. ; Domene C. ; Fowler P.W. ; Heine T. ; Seifert G. ; Alsenoy C. V. ; Zerbetto F. Phys. Chem. Chem. Phys. 1999, 1, 2913. doi: 10.1039/a901600g
[10]  22 Chen N. ; Beavers C. M. ; Mulet-Gas M. ; Rodríguez-Fortea A. ; Munoz E. J. ; Li Y. Y. ; Olmstead M. M. ; Balch A. L. ; Poblet J. M. ; Echegoyen L. J. Am. Chem. Soc. 2012, 134, 7851. doi: 10.1021/ja300765z
[11]  23 Xie S. Y. ; Gao F. ; Lu X. ; Huang R. B. ; Wang C. R. ; Zhang X. ; Liu M. L. ; Deng S. L. ; Zheng L. S. Science 2004, 304, 699. doi: 10.1126/science.1095567
[12]  27 Kato H. ; Taninaka A. ; Sugal T. ; Shinohara H. J. Am. Chem. Soc. 2003, 125, 7782. doi: 10.1021/ja0353255
[13]  39 Weinhold, F.; Landis, C. R. Discovering Chemistry with Natural Bond Orbitals;Wiley:Wisconsin, 2012; pp 35-49.
[14]  41 Bader, R. F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, 1990; pp 130-166.
[15]  4 Stevenson S. ; Fowler P.W. ; Heine T. ; Duchamp J. C. ; Rice G. ; Glass T. ; Harich K. ; Hajdu E. ; Bible R. ; Dorn H. C. Nature 2000, 408, 427. doi: 10.1038/35044199
[16]  5 Wang T. S. ; Chen N. ; Xiang J. F. ; Li B. ; Wu J. Y. ; Xu W. ; Jiang L. ; Tan K. ; Shu C. Y. ; Wang C. R. J. Am. Chem. Soc. 2009, 131, 16646. doi: 10.1021/ja9077842
[17]  蒋礼; 王太山; 舒春英; 王春儒. 中国科学, 2011, 41, 629. doi: 10.1360/032010-950
[18]  14 Fatouros P. P. ; Shultz M. D. Nanomedicine 2013, 8, 1853. doi: 10.2217/nnm.13.160
[19]  15 Zhang J. ; Liu K. ; Xing G. ; Ren T. ; Wang S. J. Radioanal. Nucl. Chem. 2007, 272, 605. doi: 10.1007/s10967-007-0632-0
[20]  16 Lu X. ; Feng L. ; Akasaka T. Chem. Soc. Rev. 2012, 41, 7723. doi: 10.1039/c2cs35214a
[21]  19 Kroto H.W. Nature 1987, 329, 529. doi: 10.1038/329529a0
[22]  24 Yang S. F. ; Popov A. A. ; Dunsch L. Angew. Chem. Int. Edit. 2007, 46, 1256. doi: 10.1002/anie.200603281
[23]  25 Kobayashi K. ; Nagase S. J. Am. Chem. Soc. 1997, 119, 12693. doi: 10.1021/ja9733088
[24]  26 Wang C. R. ; Kai T. ; Tomiyama T. ; Yoshida T. ; Kobayashi Y. ; Nishibori E. ; Takata M. ; Sakata M. ; Shinohara H. Nature 2000, 408, 426. doi: 10.1038/35044195
[25]  34 Zhao X. ; Gao W. Y. ; Yang T. ; Zheng J. J. ; Li L. S. ; He L. ; Cao R. J. ; Nagase S. Inorg. Chem. 2012, 51, 2039. doi: 10.1021/ic201585j
[26]  35 Guo Y. J. ; Yang T. ; Nagase S. ; Zhao X. Inorg. Chem. 2014, 53, 2012. doi: 10.1021/ic4022933
[27]  37 Lei D. ; Zhao C. ; Gan L. H. Acta Chim. Sin. 2014, 72, 1105. doi: 10.6023/A14060448
[28]  雷丹; 赵冲; 甘利华. 化学学报, 2014, 72, 1105. doi: 10.6023/A14060448
[29]  38 Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.;Weinhold, F. NBO 5.0; Theoretical Chemistry Institute, University ofWisconsin: Madison, WI, 2001
[30]  6 Jiang L. ; Wang T. S. ; Shu C. Y. ; Wang C. R. Sci. Sin. Chim. 2011, 41, 629. doi: 10.1360/032010-950
[31]  7 Nishibori E. ; Takata M. ; Sakata M. ; Taninaka A. ; Shinohara H. Angew. Chem. Int. Edit. 2001, 40, 2998. doi: 10.1002/1521-3773
[32]  8 Shinohara H. Rep. Prog. Phys. 2000, 63, 843. doi: 10.1088/0034-4885/63/6/201
[33]  10 Campanera J. M. ; Bo C. ; Poblet J. M. Angew. Chem. Int. Edit. 2005, 44, 7230. doi: 10.1002/anie.200501791
[34]  11 Krause M. ; Hulman M. ; Kuzmany H. ; Dubay O. ; Kresse G. ; Vietze K. ; Seifert G. ; Wang C. ; Shinohara H. Phys. Rev. Lett. 2004, 93, 137403. doi: 10.1103/PhysRevLett.93.137403
[35]  12 Lezzi E. B. ; Duchamp J. C. ; Fletcher K. R. ; Glass T. E. ; Dorn H. C. Nano Lett. 2002, 2, 1187. doi: 10.1021/nl025643m
[36]  28 Brinkmann G. ; Friedrichs O. D. ; Lisken S. ; Peeters A. ; Cleemput N. V. Match Commun. Math. Comput. Chem. 2010, 63, 533.
[37]  29 Fowler, P.W.; Manolopoulos, D. E. An Atlas of Fullerenes; Oxford: UK, 1995; pp 23-41.
[38]  30 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian Inc.: Pittsburgh, PA, 2009.
[39]  31 Chen C. H. ; Ghiassi K. B. ; Cerón M. R. ; Guerrero-Ayala M. A. ; Echegoyen L. ; Olmstead M. M. ; Balch A. L. J. Am. Chem. Soc. 2015, 137, 10116. doi: 10.1021/jacs.5b06425
[40]  32 Gan L. H. ; Chang Q. ; Zhao C. Chem. Phys. Lett. 2013, 570, 121. doi: 10.1016/j.cplett.2013.03.067
[41]  33 Slanina Z. ; Lee S. L. ; Uhlík F. ; Adamowicz L. ; Nagase S. Theor. Chem. Acc. 2007, 117, 315. doi: 10.1007/s00214-006-0150-0
[42]  36 Zhao P. ; Yang T. ; Guo Y. J. ; Dang J. S. ; Zhao X. ; Nagase S. J. Comput. Chem. 2014, 35, 1657. doi: 10.1002/jcc.v35.22
[43]  40 Biegler-K?nig, F.; Sch?nbohm, J.; Bader, R. F.W. AIM2000, Version 2.0. McMaster University, Hamilton, Canada, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133