全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201601051

Full-Text   Cite this paper   Add to My Lib

Abstract:

用稳态和动态流变学方法研究了阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和有机酸3-甲基水杨酸(3MS)的混合水溶液随浓度和温度变化的流变特性。在加热过程中混合溶液呈现三种不同类型的温度响应。其中最有趣的是,当3MS的浓度在80与100 mmol·kg-1之间时,有浅蓝色的稀溶液出现。随着温度的升高,样品由浅蓝色溶液转化成透明的粘弹性溶液,同时聚集态从囊泡转变成长的蠕虫状胶束,且开始转化的温度随溶液中3MS浓度的增加而升高。利用流变温度扫描和电导率测定对此转变进行了验证。定性解释这个转化是因为在高温下吸附的3MS分子从囊泡上解吸被溶解到水相中。
Rheological properties of aqueous mixtures of the traditional cationic surfactant cetyltrimethylammonium bromide (CTAB) and organic acid 3-methylsalicylic acid (3MS) were studied as a function of concentration and temperature using steady-state and frequency sweep-rheological measurements. Upon being heated, the solutions exhibited three different types of response. Among them, the most interesting response was that light blue dilute solutions formed over the 3MS concentration range of 80 to 100 mmol·kg-1. These samples changed from dilute pale blue solutions to transparent viscoelastic ones as their aggregation state transitioned from vesicles to long worm-like micelles with increasing temperature. Moreover, the threshold temperature of the transition increased with 3MS concentration. The results of rheological temperature scanning and conductivity measurements verified this trend. A qualitative explanation for this transformation is that bound 3MS molecules dissociate from the vesicles and join the bulk aqueous phase at high temperature

References

[1]  2 Chu Z. L. ; Dreiss C. A. ; Feng Y. J. Chem. Soc. Rev. 2013, 42, 7174. doi: 10.1039/c3cs35490c
[2]  3 Davies T. S. ; Ketner A. M. ; Raghavan S. R. J. Am. Chem. Soc. 2006, 128, 6669. doi: 10.1021/ja060021e
[3]  7 Tsuchiya K. ; Orihara Y. ; Kondo Y. ; Yoshino N. ; Ohkubo T. ; Sakai H. ; Abe M. J. Am. Chem. Soc. 2004, 126, 12282.
[4]  15 Ghosh R. ; Dey J. Langmuir 2014, 30, 13516. doi: 10.1021/la5022214
[5]  16 Cates M. E. ; Candau S. J. J. Phys. Condens. Matter 1990, 2, 6869. doi: 10.1088/0953-8984/2/33/001
[6]  18 Olsson U. ; Soderman O. ; Guering P. J. Phys. Chem. 1986, 90, 5223. doi: 10.1021/j100412a066
[7]  19 Rao U. R. K. ; Manohar C. ; Valaulikar B. S. ; Iyer R. M. J. Phys. Chem. 1987, 91, 3286. doi: 10.1021/j100296a036
[8]  20 Lin Z. ; Cai J. J. ; Scriven L. E. ; Davis H. T. J. Phys. Chem. 1994, 98, 5984. doi: 10.1021/j100074a027
[9]  21 Zheng Y. ; Lin Z. ; Zakin J. L. ; Talmon Y. ; Davis H. T. ; Scriven L. E. J. Phys. Chem. B 2000, 104, 5263. doi: 10.1021/jp0002998
[10]  32 Jiang L. X. ; Deng M. L. ; Wang Y. L. ; Liang D. H. ; Yan Y. ; Huang J. B. J. Phys. Chem. B 2009, 113, 7498.
[11]  33 Nagarajan R. Langmuir 2002, 18, 31. doi: 10.1021/la010831y
[12]  34 Raghavan S. R. ; Kaler E.W. Langmuir 2001, 17, 300. doi: 10.1021/la0007933
[13]  8 Liu C. C. ; Hao J. C. J. Phys. Chem. B. 2011, 115, 980. doi: 10.1021/jp107946n
[14]  9 Jiang L. X. ; Wang K. ; Ke F. Y. ; Liang D. H. ; Huang J. B. Soft Matter 2009, 5, 599. doi: 10.1039/B813498G
[15]  10 Singh M. ; Ford C. ; Agarwal V. ; Fritz G. ; Bose A. ; John V. T. ; McPherson G. L. Langmuir 2004, 20, 9931. doi: 10.1021/la048967u
[16]  11 Zhai L. M. ; Herzog B. ; Drechsler M. ; Hoffmann H. J. Phys. Chem. B 2006, 110, 17697. doi: 10.1021/jp0680591
[17]  12 Buwalda R. T. ; Stuart M. C. A. ; Engberts J. B. F. N. Langmuir 2000, 16, 6780. doi: 10.1021/la000164t
[18]  14 Horbaschek K. ; Hoffmann H. ; Thunig C. J. Colloid Interface Sci. 1998, 206, 439. doi: 10.1006/jcis.1998.5690
[19]  17 Magid, L. J. J. Phys. Chem. B 1998, 102, 4064. doi: 10.1021/ jp9730961
[20]  22 Acharya D. P. ; Kunieda H. J. Phys. Chem. B 2003, 107, 10168. doi: 10.1021/jp0353237
[21]  23 Shrestha R. G. ; Shrestha L. K. ; Aramaki K. J. Colloid Interface Sci. 2007, 311, 276. doi: 10.1016/j.jcis.2007.02.050
[22]  24 Wei X. L. ; Ping A. L. ; Du P. P. ; Liu J. ; Sun D. Z. ; Zhang Q. F. ; Hao H. G. ; Yu H. J. Soft Matter 2013, 9, 8454. doi: 10.1039/c3sm51017d
[23]  25 Thurn H. ; Lobl M. ; Hoffmann H. J. Phys. Chem. 1985, 89, 517. doi: 10.1021/j100249a030
[24]  26 Lin Y. Y. ; Qiao Y. ; Tang P. F. ; Li Z. B. ; Huang J. B. Soft Matter 2011, 7, 2762. doi: 10.1039/c0sm01050b
[25]  27 Shikata T. ; Hirata H. ; Kotaka T. Langmuir 1989, 5, 398. doi: 10.1021/la00086a020
[26]  28 Hoffmann, H. Structure and Flow in Surfactant Solutions; Herb, C. A., Prud' homme., R. K. Eds.; American Chemical Society:Washington, DC, 1994; pp 2-31.
[27]  29 Lin Z. Langmuir 1996, 12, 1729. doi: 10.1021/la950570q
[28]  30 Regev O. ; Guillemet F. Langmuir 1999, 15, 4357. doi: 10.1021/la980935h
[29]  31 Li X. ; Dong S. L. ; Hao J. C. Soft Matter 2009, 5, 990. doi: 10.1039/b815640a
[30]  35 Makhloufi R. ; Cressely R. Colloid Polym. Sci. 1992, 270, 1035. doi: 10.1007/BF00655973
[31]  36 Ponton A. ; Schott C. ; Quemada D. Colloids Surf. A 1998, 145, 37. doi: 10.1016/S0927-7757(98)00681-5
[32]  37 Kalur, G. C.; Frounfelker, B. D.; Cipriano, B. H.; Norman, A. I.; Raghavan, S. R. Langmuir 2005, 21, 10998. doi: 10.1021/la052069w
[33]  38 Hassan P. A. ; Valaulikar B. S. ; Manohar C. ; Kern F. ; Bourdieu L. ; Candau S. J. Langmuir 1996, 12, 4350. doi: 10.1021/la960269p
[34]  39 Menon S. V. G. ; Manohar C. ; Lequeux F. Chem. Phys. Lett. 1996, 263, 727. doi: 10.1016/S0009-2614(96)01279-1
[35]  40 Narayanan J. ; Mendes E. ; Manohar C. Int. J. Mod. Phys. B 2002, 16, 375. doi: 10.1142/S0217979202009895
[36]  1 Trickett K. ; Eastoe J. Adv. Colloid Interface 2008, 144, 66. doi: 10.1016/j.cis.2008.08.009
[37]  4 Lee, H. Y.; Diehn, K. K.; Sun, K. S.; Chen, T. H.; Raghavan, S. R. J. Am. Chem. Soc. 2011, 133, 8461. doi: 10.1021/ja202412z
[38]  5 Zhao L. ; Wang K. ; Xu L. M. ; Liu Y. ; Zhang S. ; Li Z. B. ; Yan Y. ; Huang J. B. Soft Matter 2012, 8, 9079. doi: 10.1039/C2SM25334H
[39]  6 Zhang Y. M. ; Feng Y. J. ; Wang J. Y. ; He S. ; Guo Z. R. ; Chu Z. L. ; Dreiss C. A. Chem. Commun. 2013, 49, 4902. doi: 10.1039/c3cc41059e
[40]  13 Grabner D. ; Zhai L. ; Talmon Y. ; Schmidt J. ; Freiberger N. ; Glatter O. ; Herzog B. ; Hoffmann H. J. Phys. Chem. B 2008, 112, 2901. doi: 10.1021/jp0749423

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133