通过热还原法成功地制备出了柔性复合织物电极石墨烯/棉布(graphene/cotton)。热还原条件对电极的导电性能具有较大的影响。导电柔性织物电极graphene/cotton特有的多级结构使其既有利于进一步负载膺电容材料,又有利于电子和电解质离子的传输与扩散。通过电化学沉积方法,利用导电柔性织物电极graphene/cotton进一步制备出了电极MnO2/graphene/cotton。利用扫描电子显微镜(SEM),傅里叶变换红外(FTIR)光谱,四探针测试法等表征技术对电极的结构进行了较为详细的表征。结果表明电极MnO2/graphene/cotton的比电容可以达到536 F·g-1。良好的电化学性能和柔性使得此类电极在柔性储能材料应用中具有极大的应用前景。 Graphene/cotton composite fabrics for use as flexible electrodes were prepared using a thermal reduction method. The reducing condition significantly influenced the conductivity of the graphene/cotton fabrics. The conductive graphene/cotton fabrics with hierarchical structures used as flexible electrode substrates facilitate the loading of pseudocapacitor materials, enhancing electron transport and electrolyte ion diffusion. The electrode structure was characterized in detail using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and the standard four-point probe method. After further electrochemical deposition of MnO2 sheets on the composite fabrics, the resulting MnO2/graphene/cotton composite fabrics for use as electrode materials had excellent electrochemical performance and great flexibility. The specific capacitance reached 536 F·g-1 at a scan rate of 5 mV·s-1. The electrochemical test results indicate that it can be further used for flexible energy storage materials
References
[1]
8 Lin J. ; Zhang C. G. ; Yan Z. ; Zhu Y. ; Peng Z.W. ; Hauge R. H. ; Natelson D. ; Tour J. M. Nano Lett. 2013, 13, 72. doi: 10.1021/nl3034976
[2]
9 Bian S.W. ; Zhao Y. P. ; Xian C. Y. Mater. Lett. 2013, 111, 75. doi: 10.1016/j.matlet.2013.08.028
[3]
21 Shateri-Khalilabad M. ; Yazdanshenas M. Cellulose 2013, 20, 963. doi: 10.1007/s10570-013-9873-y
[4]
24 Chen W. ; Rakhi R. B. ; Hu L. B. ; Xie X. ; Cui Y. ; Alshareef H. N. Nano Lett. 2011, 11, 5165. doi: 10.1021/nl2023433
[5]
25 Li C. C. ; Yu H. ; Yan Q. ; Hng H. H. J. Power Sources 2015, 274, 310. doi: 10.1016/j.jpowsour.2014.10.056
[6]
26 Hongtao L. ; Lei Z. ; Yunlong G. ; Cheng C. ; Lianjiang Y. ; Lang J. ; Gui Y. ; Wenping H. ; Yungi L. ; Daoben Z. J. Mater. Chem. C 2013, 1, 3104. doi: 10.1039/c3tc00067b
[7]
29 Shin H. J. ; Kim K. K. ; Benayad A. ; Yoon S. M. ; Park H. K. ; Jung I. S. ; Jin M. H. ; Jeong H. K. ; Kim J. M. ; Choi J. Y. ; Lee Y. H. Adv. Funct. Mater. 2009, 19, 1987. doi: 10.1002/adfm.200900167
[8]
3 Xu L. L. ; Bian S.W. ; Song K. L. J. Mater. Sci. 2014, 49, 6217. doi: 10.1007/s10853-014-8346-5
[9]
4 Jiang H. ; Lee P. S. ; Li C. Z. Energy Environ. Sci. 2013, 6, 41. doi: 10.1039/c2ee23284g
[10]
6 Meng C. Z. ; Liu C. H. ; Chen L. Z. ; Hu C. H. ; Fan S. S. Nano Lett. 2010, 10, 4025. doi: 10.1021/nl1019672
[11]
7 Pech D. ; Brunet M. ; Durou H. ; Huang P. H. ; Mochalin V. ; Gogotsi Y. ; Taberna P. L. ; Simon P. Nature Nanotech. 2010, 5, 651. doi: 10.1038/nnano.2010.162
[12]
10 Xu L. L. ; Guo M. X. ; Liu S. ; Bian S. W. RSC Adv. 2015, 5, 25244. doi: 10.1039/c4ra16063k
[13]
11 Simon P. ; Gogotsi Y. ; Dunn B. Science 2014, 343, 1210. doi: 10.1126/science.1249625
[14]
12 Simon P. ; Gogotsi Y. Nature Mater. 2008, 7, 845. doi: 10.1038/nmat2297
[15]
13 Wang Y. F. ; Zuo S. L. Acta Phys. -Chim. Sin. 2016, 32, 481. doi: 10.3866/PKU.WHXB201511041
15 Liang G. ; Zhu L. ; Xu J. ; Fang D. ; Bai Z. ; Xu W. Electrochim. Acta 2013, 103, 9. doi: 10.1016/j.electacta.2013.04.065
[20]
16 Xin C. ; Ming P. ; Xiao Y. ; Yongping F. ; Dechun Z. J. Mater. Chem. C 2013, 2, 1184. doi: 10.1039/c3tc31706d
[21]
17 Zhao Y. ; Hu C. G. ; Hu Y. ; Cheng H. H. ; Shi G. Q. ; Qu L. T. Angew. Chem. Int. Edit. 2012, 51, 11371. doi: 10.1002/anie.201206554
[22]
22 Sun X. ; Wang H. ; Lei Z. ; Liu Z. ; Wei L. RSC Adv. 2014, 4, 30233. doi: 10.1039/c4ra03983a
[23]
23 Hassan S. ; Suzuki M. ; Mori S. ; El-Moneim A. A. RSC Adv. 2014, 4, 20479. doi: 10.1039/c4ra01132e
[24]
27 Pei S. F. ; Zhao J. P. ; Du J. H. ; Ren W. C. ; Cheng H. M. Carbon 2010, 48, 4466. doi: 10.1016/j.carbon.2010.08.006
[25]
18 Jost K. ; Perez C. R. ; McDonough J. K. ; Presser V. ; Heon M. ; Dion G. ; Gogotsi Y. Energy Environ. Sci. 2011, 4, 5060. doi: 10.1039/c1ee02421c
[26]
19 Hu L. B. ; Chen W. ; Xie X. ; Liu N. A. ; Yang Y. ; Wu H. ; Yao Y. ; Pasta M. ; Alshareef H. N. ; Cui Y. ACS Nano 2011, 5, 8904. doi: 10.1021/nn203085j
[27]
20 Lu Z. ; Mao C. ; Zhang H. J. Mater. Chem. C 2015, 3, 4265. doi: 10.1039/c5tc00917k
[28]
30 Zhu J. ; Tang S. ; Xie H. ; Dai Y. ; Meng X. ACS Appl. Mater. Interfaces 2014, 6, 17637. doi: 10.1021/am505622c
[29]
1 Xue J. L. ; Zhao Y. ; Cheng H. H. ; Hu C. G. ; Hu Y. ; Meng Y. N. ; Shao H. B. ; Zhang Z. P. ; Qu L. T. Phys. Chem. Chem. Phys. 2013, 15, 8042. doi: 10.1039/c3cp51571k