用中和法合成了氨基酸离子液体1-乙基-3-甲基咪唑丙氨酸([C2mim][Ala]),并利用恒温环境的溶解反应热量计,在(288.15±0.01) K-(308.15±0.01) K温度范围内每隔5 K,测定不同质量摩尔浓度离子液体在水中的溶解焓(ΔsolHmθ).根据Archer的方法,通过线性拟合得到了该离子液体的标准摩尔溶解焓(Δsol),并计算了其相对表观摩尔溶解焓(ΦL).在298.15 K下,根据Glasser经验方法得到了格子能UPOT = 566 kJ·mol-1,并计算了其阴阳离子水化焓值(ΔH+ + ΔH-) = -620 kJ·mol-1及阴离子水化焓ΔH-([Ala]-) = -387 kJ·mol-1.此外,估算了[C2mim][Ala]水溶液的热容(Cp(sol))和表观摩尔热容(ΦCp). We synthesized the alanine-based ionic liquid [C2mim][Ala] (1-ethyl-3-methylimidazolium alanine) by using the neutralization method and characterized it. Using a solution-reaction isoperibol calorimeter, we determined the molar enthalpies of the solution (ΔsolHm) at various molalities in water from (288.15±0.01) to (308.15±0.01) K in intervals of 5 K. Using Archer's method, we obtained the standard molar enthalpy of solution for [C2mim][Ala] (ΔsolHmθ) and calculated its apparent relative molar enthalpy (ΦL). Using Glasser's theory of lattice energy, we obtained the lattice energy, UPOT = 566 kJ·mol-1, the hydration enthalpy of the cation and anion, (ΔH+ + ΔH-) = -620 kJ·mol-1, and the hydration enthalpy of an anion, ΔH-([Ala]-) = -387 kJ·mol-1 at 298.15 K. Finally, we obtained the heat capacity of aqueous [C2mim][Ala] (Cp(sol)) and its apparent molar heat capacity (ΦCp) at various specific molalities
References
[1]
29 Gutowski K. E. ; Rogers R. D. ; Dixon D. A. J.Phys. Chem. B 2007, 111, 4788. doi: 10.1021/jp066420d
[2]
30 Zhang, Q. B. Synthesis and Study on the Physico-Chemical Properties of the Acetic Acid Series and Alanine Series of Ionic Liquids. Master Dissertation, Liaoning University, Shenyang, 2014.
[3]
张秋波.醋酸离子液体和丙氨酸离子液体的合成及物理化学性质的测定[D].沈阳:辽宁大学, 2014.
[4]
31 Yang J. Z. ; Zhang Z. H. ; Fang D. W. ; Li J. G. ; Guan W. Fluid Phase Equilibria 2006, 247, 80. doi: 10.1016/j.fluid.2006.06.016
[5]
2 Ohira K. ; Yoshida K. ; Hayase S. ; Itoh T. Chemistry Letters 2012, 41, 987. doi: 10.1246/cl.2012.987
[6]
4 Pemberton W. J. ; Droessler J. E. ; Kinyanjui J. M. ; Czerwinski K. R. ; Hatchett D. W. Electrochimica Acta 2013, 93, 264. doi: 10.1016/j.electacta.2013.01.044
[7]
5 Pinto A. M. ; Rodríguez H. ; Arce A. ; Soto A. Journal of Chemical Thermodynamics 2014, 77, 197. doi: 10.1016/j.jct.2013.10.023
[8]
6 Christodoulou C. P. K. ; Stavrou I. J. ; Mavroudi M.C. Journal of Chromatography A 2014, 1363, 2. doi: 10.1016/j.chroma.2014.05.059
[9]
7 Kasahara S. ; Kamio E. ; Matsuyama H. J. Membrane Science 2014, 454, 155. doi: 10.1016/j.memsci.2013.12.009
[10]
8 Li X. H. ; Jiang Y. B. ; Zhang L. ; Li R. Acta Phys. -Chim. Sin 2006, 22, 747. doi: 10.3866/PKU.WHXB20060620
9 Primerano P. ; Milazzo M. F. ; Risitano F. ; Matarazzo A. Journal of Chemical Technology and Biotechnology 2015. doi: 10.1002/jctb.4717
[13]
13 Guan W. ; Yang J. Z. ; Li L. ; Wang H. ; Zhang Q. G. Fluid Phase Equilibria 2006, 239, 161. doi: 10.1016/j.fluid.2005.11.015
[14]
16 Fukumoto K. ; Yoshizawa M. ; Ohno H. J. Am. Chem. Soc 2005, 127, 2398. doi: 10.1021/ja043451i
[15]
17 Wilkes J. S. ; Levisky J. A. ; Wilson R. A. ; Hussey C. L. Inorg. Chem 1982, 21, 1263. doi: 10.1021/ic00133a078
[16]
14 Ma X. X. ; Wei J. ; Zhang Q. B. ; Tian F. ; Feng Y. Y. ; Guan W. Ind. Eng. Chem. Res 2013, 52, 9490. doi: 10.1021/ie401130d
[17]
20 Ji M. ; Liu M. Y. ; Gao S. L. ; Shi Q. Z. Instrum. Sci. Technol 2001, 29, 53. doi: 10.1081/CI-100001408
[18]
21 Rychly R. ; Pekarek V. J. Chem. Thermodyn 1977, 9, 391. doi: 10.1016/0021-9614(77)90060-X
[19]
22 Montgomery R. L. ; Melaugh R. A. ; Lau C. C. ; Meier G. H. ; Chan H. H. ; Rossini F. D. J. Chem. Thermodyn 1977, 9, 915. doi: 10.1016/0021-9614(77)90214-2
[20]
23 Ma X. X. ; Li L. ; Wei J. ; Duan W. B. ; Guan W. ; Yang J. Z. J. Chem. Eng. Data 2012, 57, 3171. doi: 10.1021/je300768j
[21]
24 Archer D. G. ; Widegren J. A. ; Kirklin D. R. ; Magee J. W. J. Chem. Eng. Data 2005, 50, 1484. doi: 10.1021/je050136i
[22]
25 Pitzer, K. S. Activity Coefficients in Electrolyte Solutions, Chapter 3; CRC Press: Boca Raton, FL. 1991.
[23]
26 Fang D. W. ; Guan W. ; Tong J. ; Wang Z. W. ; Yang J. Z. J. J.Phys. Chem. B 2008, 112, 7499. doi: 10.1021/jp801269u
[24]
27 Glasser L. Thermochim. Acta 2004, 421, 87. doi: 10.1016/j.tca.2004.03.015
[25]
32 Paulechka Y. U. ; Kabo A. G. ; Blokhin A. V. ; Kabo G. J. ; Shevelyova M. P. J.Chem. Eng. Data 2010, 55, 2719. doi: 10.1021/je900974u
[26]
15 Wei J. ; Zhang Q. B. ; Tian F. ; Zheng L. ; Guan W. ; Ya ng J.Z. Fluid Phase Equilibria 2014, 371, 1. doi: 10.1016/j.fluid.2014.03.011
[27]
28 Glasser L. ; Jenkins H. D. B. J.Chem. Eng. Data 2011, 56, 874. doi: 10.1021/je100683u
[28]
1 Fukumoto K. ; Yoshizawa M. ; Ohno H. J.Am. Chem. Soc 2005, 127, 2398. doi: 10.1021/ja043451i
[29]
3 Rauta D. G. ; Sundman O. ; Su W. ; Virtanen P. ; Sugano Y. ; Kordasd K. ; Mikkola J. P. Carbohydrate Polymer 2015, 130, 18. doi: 10.1016/j.carbpol.2015.04.032
[30]
10 Liu Y. ; Tian A. ; Wang X. ; Qi J. ; Wang F. ; Ma Y. ; Ito Y. ; Wei Y. Journal of Chromatography A 2015, 1400, 40. doi: 10.1016/j.chroma.2015.04.045
[31]
11 Bi Y. H. ; Duan Z. Q. ; Li X. Q. ; Wang Z. Y. ; Zhao X. R. Journal of Agricultural and Food Chemistry 2015, 63, 558. doi: 10.1021/jf505296k
[32]
12 Wei J. ; Ma T. Y. ; Ma X. X. ; Guan W. ; Liu Q. S. ; Yang J. Z. RSC Adv 2014, 4, 30725. doi: 10.1039/C4RA04391J
[33]
18 Di Y. Y. ; Qu S. S. ; Liu Y. ; Wen D. C. ; Tang H. ; Li L. W. Thermochim Acta 2002, 387, 115. doi: 10.1016/S0040-6031(01)00831-0
[34]
19 Liu J. G. ; Xue W. F. ; Qin Y. ; Yan C. W. J. Chem. Eng. Data 2009, 54, 1938. doi: 10.1021/je8009557