以聚丙烯腈(PAN)和三聚氰胺为原料,通过静电纺丝法制备了三聚氰胺改性聚丙烯腈纳米纤维前驱体,经预氧化、碳化后得到交联的多孔纳米碳纤维.采用红外光谱(FTIR)仪、热重分析(TGA)仪、扫描电子显微镜(SEM)、X射线衍射(XRD)仪、拉曼光谱仪和比表面积分析仪等对前驱体及纤维进行了表征.结果表明,经过三聚氰胺改性的聚丙烯腈纳米纤维前驱体在碳化后有效地交联,形成含有微孔、介孔和大孔多级的合理孔道结构,氮掺杂量高达14.3%,纤维直径大幅缩减,平均直径仅约89 nm.电化学测试结果表明,交联多孔纳米碳纤维电极在0.05 A·g-1电流密度下未经活化时的质量比电容值高达194 F·g-1(0.05 A·g-1),在2 A·g-1的电流密度下经过1000次循环充放电后的比电容仍然保持99.2%,表现出优异的电化学特性. Cross-linked porous carbon nanofiber networks were successfully prepared by electrospinning followed by preoxidation and carbonization using low-cost melamine and polyacrylonitrile (PAN) as precursors. The structures and morphologies of the nanofiber networks were investigated using Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, and N2 adsorption/desorption. The carbon fibers had an interconnected nanofibrous morphology with a well-developed porous structure including micropores, mesopores and macropores, high-level nitrogen doping (up to 14.3%), and a small average diameter (about 89 nm). Without activation, the carbon nanofibers had a high specific capacitance of 194 F·g-1 at a current density of 0.05 A·g-1. Cycling experiments showed that the specific capacitance retained approximately 99.2% of the initial capacitance after 1000 cycles at a current density of 2 A·g-1, indicating an excellent electrochemical performance
References
[1]
2 Li L. ; He Y. Q. ; Chu X. F. ; Li Y. M. ; Sun F. F. ; Huang H. Z. Acta Phys. -Chim. Sin 2013, 29 (8), 1681. doi: 10.3866/PKU.WHXB201305223
18 Kim B. H. ; Yang K. S. J. Electroanal. Chem 2014, 714, 92.
[7]
22 Hang Z. S. ; Tan L. H. ; Ju F. Y. ; Zhou B. ; Ying S. J. J. Anal. Sci 2011, 27 (3), 279.
[8]
23 Yuan B. ; Zheng X. Y. ; Zhang C. ; Lu W. ; Li B. H. ; Yang Q. H. New Carbon Materials 2014, 29 (6), 426. doi: 10.1016/S1872-5805(14)60147-5
[9]
26 Sun L. ; Tian C. G. ; Fu Y. ; Yang Y. ; Yin J. ; Wang L. ; Fu H. G. ; Chem Eur J. Chem. Eur. J 2014, 20, 564. doi: 10.1002/chem.v20.2
[10]
28 Li M. ; Xue J. J. Phys. Chem. C 2014, 118 (5), 2507. doi: 10.1021/jp410198r
[11]
29 Muhammad T. ; Chuan B. C. ; Nasir M. ; Faheem K. B. ; Asif M. ; Faryal I. ; Sajad H. M. T. ; Zulfiqar A. ; Imran A. ACS Appl. Mater. Interfaces 2014, 6, 1258.
[12]
34 Lu J. W. ; Ren X. Z. ; Chen Y. Z. ; Dong M. ; Zhang Z. P. ; Yu J. ; Guo C. Y. ; Chem J. Chin. Univ 2008, 29 (9), 1870.
35 Yang X. ; Wu D. ; Chen X. ; Fu R. J. Phys. Chem. C 2010, 114 (18), 8581. doi: 10.1021/jp101255d
[15]
36 Su F. ; Poh C. K. ; Chen J. S. ; Xu G. ; Wang D. ; Li Q. ; Lin J. ; Lou X. W. Energy Environ. Sci 2011, 4 (3), 717. doi: 10.1039/C0EE00277A
[16]
37 Wen Z. ; Wang X. ; Mao S. ; Bo Z. ; Kim H. ; Cui S. ; Lu G. ; Feng X. ; Chen J. Adv. Mater 2012, 24 (41), 5610. doi: 10.1002/adma.201201920
[17]
38 Xiao N. ; Lau D. ; Shi W. ; Zhu J. ; Dong X. ; Hng H. H. ; Yan Q. Carbon 2013, 57, 184. doi: 10.1016/j.carbon.2013.01.062
[18]
6 Ma G. F. ; Mu J. J. ; Zhang Z. G. ; Sun K. J. ; Peng H. ; Lei Z. Q. Acta Phys. -Chim. Sin 2013, 29 (11), 2385. doi: 10.3866/PKU.WHXB201309051
[19]
27 Nan D. ; Huang Z. H. ; Lv R. T. ; Yang L. ; Wang J. G. ; Shen W. C. ; Lin Y. X. ; Yu X. L. ; Ye L. ; Sun H. Y. ; Kang F. Y. J. Mater. Chem. A 2014, 2, 19678. doi: 10.1039/C4TA03868A
[20]
32 An G. H. ; Ahn H. J. Carbon 2013, 65, 87. doi: 10.1016/j.carbon.2013.08.002
4 Chen C. J. ; Hu Z. A. ; Hu Y. Y. ; Li L. ; Yang Y. Y. ; An N. ; Li Z. M. ; Wu H. Y. Acta Phys. -Chim. Sin 2014, 30 (12), 2256. doi: 10.3866/PKU.WHXB201409302
11 Zhao L. ; Wu Q. ; Han R. ; Wu J. ; Yao W. Materials Review 2013, 27 (11), 54.
[30]
12 Su D. S. ; Chen X. ; Weinberg G. ; Klein-Hofmann A. ; Timpe O. ; Hamid S. B. A. ; Schl? gl R. Angew. Chem. Int. Edit 2005, 44 (34), 5488.
[31]
13 Sharma S. ; Pollet B. G. J. Power Sources 2012, 208, 96. doi: 10.1016/j.jpowsour.2012.02.011
[32]
19 Park G. S. ; Lee J. S. ; Kim S. T. ; Park S. ; Cho J. J. Power Sources 2013, 243, 267. doi: 10.1016/j.jpowsour.2013.06.025
[33]
24 Wu H. ; Hu L. ; Rowell M. W. ; Kong D. ; Cha J. J. ; McDonough J. R. ; Zhu J. ; Yang Y. ; McGehee M. D. ; Cui Y. Nano Lett 2010, 10 (10), 4242. doi: 10.1021/nl102725k
[34]
25 Qiu Y. J. ; Yu J. ; Shi T. G. ; Zhou X. S. ; Bai X. D. ; Huang J. Y. J. Power Sources 2011, 196, 9862. doi: 10.1016/j.jpowsour.2011.08.013
[35]
30 Ya M. ; Hui D. ; Bin X. ; Lin Z. ; Yong S. H. ; Chang C. X. Energy Environ. Sci 2012, 5 (7), 7950.
[36]
31 Chuan G. H. ; Qing H. ; Fei Z. ; Zi Y. Y. ; Nan C. ; Liang T. Q. Nanoscale 2013, 5, 2726. doi: 10.1039/c3nr34002c
[37]
1 Li Z. H. ; Li S. J. ; Zhou J. ; Zhu T. T. ; Shen H. L. ; Zhuo S. P. Acta Phys. -Chim. Sin 2015, 31 (4), 676. doi: 10.3866/PKU.WHXB201501281
[38]
5 Guo P. Z. ; Ji Q. Q. ; Zhang L. L. ; Zhao S. Y. ; Zhao X. S. Acta Phys. -Chim. Sin 2011, 27 (12), 2836. doi: 10.3866/PKU.WHXB20112836
[39]
9 Lai C. ; Zhou Z. ; Zhang L. ; Wang X. ; Zhou Q. ; Zhao Y. ; Wang Y. ; Wu X. F. ; Zhu Z. ; Fong H. J. Power Sources 2014, 247, 134. doi: 10.1016/j.jpowsour.2013.08.082
[40]
10 Yang S. ; Xu G. Y. ; Han J. P. ; Bing H. ; Dou H. ; Zhang X. G. Acta Phys. -Chim. Sin 2015, 31 (4), 685. doi: 10.3866/PKU.WHXB201502022