全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201511104

Full-Text   Cite this paper   Add to My Lib

Abstract:

以MnO2为氧化剂,采用乳液聚合法,用三种不同的磺酸型表面活性剂制备掺杂聚苯胺(PANI)。通过扫描电子显微镜(SEM)、傅里叶变换红外(FTIR)光谱以及X射线衍射(XRD)等手段对其结构及形貌进行表征;用所得的掺杂聚苯胺制作电极,组装成对称扣式超级电容器,用循环伏安法(CV)、电化学阻抗(EIS)和恒电流充放电技术进行电化学性能研究。结果表明,磺酸表面活性剂的引入有利于PANI纳米纤维的形成和分散,掺杂Nafion的PANI纤维直径在30-40 nm之间,纤维交织成多孔的疏松结构;当放电电流为0.1 A·g-1时,以PANI-Nafion、PANI-SDS(十二烷基磺酸钠)、PANI-SDBS(十二烷基苯磺酸钠)为电极材料的超级电容器比容量分别为385.3、359.7、401.6 F·g-1,均高于未掺杂PANI的比容量(235.8 F·g-1);其中, PANINafion的循环稳定性最好, 1000次循环后其比容量保持率高达70.7%。
Polyaniline (PANI) nanomaterials doped with three different sulfonic acid surfactants (perfluorinated sulfonic acid ion exchange resin (Nafion), sodium dodecyl sulfate (SDS), and sodium dodecyl benzene sulfonate (SDBS)) were prepared using an emulsion polymerization method with manganese dioxide (MnO2) as the oxidant. The structure and morphology of the products were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). Symmetric redox supercapacitor was assembled with doped PANI as the active electrode material. The electrochemical performances of the materials were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge tests. These results suggest that the introduction of surfactant is beneficial for the formation of a fiber structure and increases the dispersion of PANI. A PANI-Nafion network with distributed porosity and average diameters of 30-40 nm is obtained. The specific capacitances of PANI-Nafion, PANI-SDS, and PANI-SDBS electrodes at 0.1 A·g-1 are 385.3, 359.7, and 401.6 F·g-1, respectively. Among these electrodes PANI-Nafion delivers the best cycle performance, maintaining 70.7% of its initial capacitance after 1000 cycles

References

[1]  1 Wang L. L. ; Xing R. G. ; Zhang B. W. ; Hou Y Acta Phys. -Chim. Sin 2014, 30 (9), 1659. doi: 10.3866/PKU.WHXB201406162
[2]  23 Chen W. ; Rakhi R. B. ; Alshareef H. N. J Mater. Chem. A 2013, 1, 3315. doi: 10.1039/C3TA00499F
[3]  25 Smitha B. ; Sridhar S. ; Animesh K. J Membr. Sci 2005, 259, 10. doi: 10.1016/j.memsci.2005.01.035
[4]  30 Yang M. ; Li J. X. ; Li H. H. ; Su L.W. ; Wei J. P. ; Zhou Z Phys. Chem. Chem. Phys 2012, 14, 11048. doi: 10.1039/C2CP41604B
[5]  31 Qiu Y. ; Lu L. ; Wang S. S. ; Zhang X. H. ; He S. T. ; He T Power Sources 2014, 253, 300. doi: 10.1016/j.jpowsour.2013.12.061
[6]  32 Gu Y. S. ; Tsai J. Y Synth. Met 2012, 161 (23-24), 2743. doi: 10.1016/j.synthmet.2011.10.013
[7]  34 Zhang L. Y. ; He S. J. ; Chen S. L. ; Guo Q. H. ; Hou H. Q Acta Phys. -Chim. Sin 2010, 26 (12), 3181. doi: 10.3866/PKU.WHXB20101135
[8]  张雷勇; 何水剑; 陈水亮; 郭乔辉; 侯豪情. 物理化学学报, 2010, 26 (12), 3181. doi: 10.3866/PKU.WHXB20101135
[9]  35 Trchová M. ; Sédeňková I. ; Tobolková E. ; Stejskal J Polym. Degrad. Stab 2004, 86 (1), 179. doi: 10.1016/j.polymdegradstab.2004.04.011
[10]  37 Liu W. ; Ashok L. C. ; Ramaswamy N. ; Jayant K. ; Sukant T. ; Ferdinando F. B. ; Lynne S. J Am. Chem. Soc 1999, 121 (49), 11345. doi: 10.1021/ja9926156
[11]  38 David E. S. ; Su-Moon P. J Electrochem. Soc 1988, 135 (9), 2254. doi: 10.1149/1.2096248
[12]  39 Mi H. Y. ; Zhang X. G. ; Yang S. D. ; Ye X. G. ; Luo J. M Mater. Chem. Phys 2008, 112 (1), 127. doi: 10.1016/j.matchemphys.2008.05.022
[13]  4 Zhang Y. ; Feng H. ; Wu X. B. ; Wang L. Z. ; Zhang A. Q. ; Xia T. C. ; Dong H. C. ; Li X. F. ; Zhang L. S. Int. J. Hydrog. Energy 2009, 34, 4889. doi: 10.1016/j.ijhydene.2009.04.005
[14]  5 Brownson D. A. C. ; Kampouris D. K. ; Banks C. E. J Power Sources 2011, 196, 4873. doi: 10.1016/j.jpowsour.2011.02.022
[15]  6 Tapan K. D. ; Smita P Polym. Plast. Technol. Eng 2012, 51, 1487. doi: 10.1080/03602559.2012.710697
[16]  9 Gnanakan S. R. P. ; Murugananthem N. ; Subramania A Polym. Adv. Technol 2011, 22 (6), 788. doi: 10.1002/pat.1578
[17]  12 Gao L. ; Liao Y. ; Zhang X. H. ; Chen J. H. Chem. J. Chin. Univ 2013, 34 (2), 2845. doi: 10.7503/cjcu20130366
[18]  13 Cong H. P. ; Ren X. C. ; Wang P. ; Yu S. R Energy Environ. Sci 2013, 6, 1185. doi: 10.1039/C2EE24203F
[19]  15 David V. ; Pavel L. ; Kimberly A. S. ; Fred W. ; Alan J. H Adv. Mater 2014, 26 (30), 5095. doi: 10.1002/adma.201400966
[20]  16 Xin G. X. ; Wang Y. H. ; Liu X. X. ; Zhang J. H. ; Wang Y. F. ; Huang J. J. ; Zang J. B Electrochim. Acta 2015, 167, 254. doi: 10.1016/j.electacta.2015.03.181
[21]  18 Salma B. ; Salma G. ; Khurshid A. ; Shah A. A Synth. Met 2012, 162, 2259. doi: 10.1016/j.synthmet.2012.11.003
[22]  19 Girija T. C. ; Sangaranarayanan M. V Synth. Met 2006, 156, 244. doi: 10.1016/j.synthmet.2005.12.006
[23]  22 Chen T. ; Dong C. F. ; Li X. G. ; Gao J Polym. Degrad. Stab 2009, 94 (10), 1788. doi: 10.1016/j.polymdegradstab.2009.06.011
[24]  26 Birgit S. ; Soowhan K. ; Vijayakumar M. ; Yang Z. G. ; Liu J J. Membr. Sci 2011, 372, 11. doi: 10.1016/j.memsci.2011.01.025
[25]  28 Huang Y. G. ; Zhong X. X. ; Huang H. X. ; Li Q. Y. ; Wang Z.H. ; Feng Q. P. ; Wang H. Q. Int. J Hydrog. Energy 2014, 39 (28), 16132. doi: 10.1016/j.ijhydene.2014.06.013
[26]  33 Zhou D. H. ; Li Y. H. ; Wang J. Y. ; Xu P. ; Han X. J Mater. Lett 2011, 65 (23-24), 3601. doi: 10.1016/j.matlet.2011.08.021
[27]  36 Lu X. H. ; Ng H. Y. ; Xu J. Y. ; He H. B Synth. Met 2002, 128, 167. doi: 10.1016/S0379-6779(01)00668-3
[28]  40 Yan J. ; Wei T. ; Fan A. J. ; Qian W. Z. ; Zhang M. L. ; Shen X.D. ; Wei F. J Power Sources 2010, 195, 3041. doi: 10.1016/j.jpowsour.2009.11.028
[29]  41 Kima B. C. ; Too C. O. ; Kwon J. S. ; Ko J. M. ; Wallace G. G Synth. Met 2011, 161, 1130. doi: 10.1016/j.synthmet.2011.01.015
[30]  汪丽丽; 邢瑞光; 张邦文; 侯渊. 物理化学学报, 2014, 30 (9), 1659. doi: 10.3866/PKU.WHXB201406162
[31]  2 Fan T. J. ; Tong S. Z. ; Zeng W. J. ; Niu Q. L. ; Liu Y. D. ; Kao C. H. ; Li J. Y. ; Huang W. ; Min Y. ; Arthur J. E Synth. Met 2015, 199, 79. doi: 10.1016/j.synthmet.2014.11.017
[32]  3 Simon P. ; Gogotsi Y Nat. Mater 2008, 7, 845. doi: 10.1038/nmat2297
[33]  7 Wang J. D. ; Peng T. J. ; Xian H. Y. ; Sun H. J Acta Phys. -Chim. Sin 2015, 31 (1), 90. doi: 10.3866/PKU.WHXB201411202
[34]  汪建德; 彭同江; 鲜海洋; 孙红娟. 物理化学学报, 2015, 31 (1), 90. doi: 10.3866/PKU.WHXB201411202
[35]  8 Yang S. ; Xu G. Y. ; Han J. P. ; Bing H. ; Dou H. ; Zhang X. G Acta Phys. -Chim. Sin 2015, 31 (4), 685. doi: 10.3866/PKU.WHXB201502022
[36]  杨硕; 徐桂银; 韩金鹏; 邴欢; 窦辉; 张校刚. 物理化学学报, 2015, 31 (4), 685. doi: 10.3866/PKU.WHXB201502022
[37]  10 Liao Y. ; Gao L. ; Zhang X. H. ; Chen J. H Mater. Res. Bull 2012, 47 (7), 1625. doi: 10.1016/j.materresbull.2012.03.047
[38]  11 Peng H. ; Ma G. F. ; Ying W. M. ; Wang A. D. ; Huang H. H. ; Lei Z. Q. J Power Sources 2012, 211, 40. doi: 10.1016/j.jpowsour.2012.03.074
[39]  高磊; 廖奕; 张小华; 陈金华. 高等学校化学学报, 2013, 34 (2), 2845. doi: 10.7503/cjcu20130366
[40]  14 Graeme A. S. ; Pon K. ; Adam S. B. J. Power Sources 2011, 196, 1. doi: 10.1016/j.jpowsour.2010.06.084
[41]  17 Mohd K. ; Milton A. T. ; Iuri S. B. ; Vinicius C. Z. ; Jose J. S. A. ; Andre A. P. Indian J. Mater. Sci 2013, 2013, 7.
[42]  20 Jan P. ; Jaroslav S Polym. Degrad. Stab 2004, 86, 187. doi: 10.1016/j.polymdegradstab.2004.04.012
[43]  21 Gaikwad P. D. ; Shirale D. J. ; Gade V. K. ; Savale P. A. ; Kharat H. J. ; Kakde K. P. ; Hussaini S. S. ; Dhumane N. R. ; Shirsat M. D Bull. Mater. Sci 2006, 29 (2), 169. doi: 10.1007/BF02704611
[44]  24 Xie H. G. ; Ma Y. M. ; Guo J. S Polymer 1999, 40 (1), 261. doi: 10.1016/S0032-3861(98)00224-9
[45]  27 Kim B. C. ; Ko J. M. ; Wallace G. G. J Power Sources 2008, 177, 665. doi: 10.1016/j.jpowsour.2007.11.078
[46]  29 Sudipta C. ; Fabien S. ; Christine C. ; Suzy V. ; Alexandre B Carbohydr. Polym 2012, 90 (2), 967. doi: 10.1016/j.carbpol.2012.06.028

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133