全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201606226

Full-Text   Cite this paper   Add to My Lib

Abstract:

从层状化合物获得的纳米片是一类新型纳米结构材料,这种二维各向异性的纳米甚至亚纳米级的材料具有独特的物理化学性能,其中最好的一个例证就是从石墨烯C3N4到石墨烯C3N4纳米片的转变。通过高温氧化热刻蚀方法将体相g-C3N4剥离成g-C3N4纳米片,应用于染料敏化可见光分解水产氢,表现出了较体相g-C3N4高于2.6倍的产氢速率。通过X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、扫描电子显微镜(SEM)、Brunauer-Emmett-Teller(BET)、荧光光谱和光电化学等表征研究了g-C3N4纳米片的结构及曙红(EY)和g-C3N4纳米片之间的电子迁移过程。热剥离后的g-C3N4纳米片具有较高的比表面积,不仅可以更为有效地吸附染料分子,还因其量子限域效应大大增强了光生电荷的分离效率和电子转移效率,改善了电子沿平面方向的传输能力以及光生载流子的寿命,从而显著提高g-C3N4纳米片的光催化产氢活性。
Nanosheet materials obtained from laminar compounds are new two-dimensional anisotropic nanomaterials that can even reach the sub-nanometer scale. These materials possess unique physical and chemical properties. An example of such a nanosheet materials is graphitic carbon nitride (g-C3N4) nanosheets transformed from bulk g-C3N4. Here, g-C3N4 nanosheets were prepared from bulk g-C3N4 by high-temperature thermal oxidation. The photocatalytic activity of eosin (EY)-sensitized g-C3N4 nanosheets for hydrogen evolution was about 2.6 times higher than that of bulk g-C3N4. The structure of the g-C3N4 nanosheets and process of electron transfer between EY and the g-C3N4 nanosheets were investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, fluorescence spectroscopy, and photoelectrochemical measurements. The g-C3N4 nanosheets possessed high specific surface area. The g-C3N4 nanosheets not only effectively absorbed dye molecules, but also enhanced the separation and electron transport efficiencies of photogenerated charges because of their quantum confinement effect. The quantum confinement effect of g-C3N4 nanosheets widened their bandgap, improved electron transfer ability along the in-plane direction, and lengthened the lifetime of photoexcited charge carriers. As a result, the photocatalytic activity of the g-C3N4 nanosheets was improved compared with that of bulk g-C3N4

References

[1]  彭绍琴; 丁敏; 易婷; 李越湘. 分子催化, 2014, 28, 466.
[2]  3 Li C. L. ; Lei Z. Q. ; Wang Q. Z. ; Cao F. ; Wang F. ; Shangguan W. F J. Mol. Catal. (China) 2015, 29, 382. doi: 10.16084/j.cnki.issn1001-3555.2015.04.012
[3]  李曹龙; 雷自强; 王其召; 曹菲; 王飞; 上官文峰. 分子催化, 2015, 29, 382. doi: 10.16084/j.cnki.issn1001-3555.2015.04.012
[4]  4 Wang X. ; Maeda K. ; Thomas A; Takanabe ; K . ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M Nat. Mater. 2009, 8, 76. doi: 10.1038/nmat2317
[5]  9 Wang X. ; Maeda K. ; Chen X. F. ; Takanabe K. ; Kazunari D. ; Hou Y. D. ; Fu X. Z. ; Antonietti M J. Am. Chem. Soc. 2009, 131, 1680. doi: 10.1021/ja809307s
[6]  吴思展.类石墨氮化碳(g-C3N4)的合成、加工处理、修饰及其光催化性能的研究[D].广州:华南理工大学, 2014.
[7]  20 Li Y. F. ; Li Y. ; Li K. ; Yang Y. ; Li L. J. ; Xing Y. ; Song S. Y. ; Jin R. C. ; Li M Chem. -Eur. J. 2015, 21, 17739. doi: 10.1002/chem.201502945
[8]  22 Cao S.W. ; Yuan Y. P. ; Fang J. ; Shahjamali M. M. ; Boeya F.Y. C. ; Barber J. ; Loo J. S. C. ; Xue C Int. J. Hydrog. Energy 2013, 38, 1258. doi: 10.1016/j.ijhydene.2012.10.116
[9]  23 Tonda S. ; Kumar S. ; Kandula S. ; Shanker V J. Mater. Chem. A 2014, 2, 6772. doi: 10.1039/C3TA15358D
[10]  25 Wang Z. S. ; Kawauchi H. ; Kashima T. ; Arakawa H Coord. Chem. Rev. 2004, 248, 1381. doi: 10.1016/j.ccr.2004.03.006
[11]  28 Jin Z. L. ; Zhang X. J. ; Li Y. X. ; Li S. B. ; Lu G. X J. Mol. Catal. A: Chem. 2006, 259, 275. doi: 10.1016/j.molcata.2006.06.035
[12]  29 Liu X. ; Li Y. X. ; Peng S. Q. ; Lai H Acta Phys. -Chim. Sin. 2015, 31, 612. doi: 10.3866/PKU.WHXB201502041
[13]  刘兴; 李越湘; 彭绍琴; 赖华. 物理化学学报, 2015, 31, 612. doi: 10.3866/PKU.WHXB201502041
[14]  1 Yang Y. ; Xia L. F. ; Fan Z. Y. ; Chen W. ; Chen X. P. ; Yuan J. ; Shangguan W. F J. Mol. Catal. (China) 2014, 28, 182. doi: 10.16084/j.cnki.issn1001-3555.2014.02.011
[15]  杨俞; 夏龙飞; 范泽云; 陈威; 陈小平; 袁坚; 上官文峰. 分子催化, 2014, 28, 182. doi: 10.16084/j.cnki.issn1001-3555.2014.02.011
[16]  2 Peng S. Q. ; Ding M. ; Yi T. ; Li Y. X J. Mol. Catal. (China) 2014, 28, 466.
[17]  39 Williams G. ; Kamat P. V Langmuir 2009, 25, 13869. doi: 10.1021/la900905h
[18]  5 Wang X. ; Blechert S. ; Antonietti M ACS Catal. 2012, 2, 1596. doi: 10.1021/cs300240x
[19]  6 Chen X. F. ; Jun Y. S. ; Takanabe K. ; Kazuhiko M. ; Kazunari D. ; Fu X. Z. ; Antonietti M. ; Wang X Chem. Mater 2009, 21, 4093. doi: 10.1021/cm902130z
[20]  7 Hao X. Q. ; Jin Z. L. ; Min S. X. ; Lu G. X RSC Advances 2016, 6, 23709. doi: 10.1039/C5RA22102A
[21]  8 Cao S. ; Yu J J. Phys. Chem. Lett. 2014, 5, 2101. doi: 10.1021/jz500546b
[22]  10 Yan S. C. ; Li Z. S. ; Zou Z. G Langmuir 2010, 26, 3894. doi: 10.1021/la904023j
[23]  11 Wang Y. ; Di Y. ; Antonietti M. ; Li H. R. ; Chen X. F. ; Wang X Chem. Mater. 2010, 22, 5119. doi: 10.1021/cm1019102
[24]  12 Chen X. F. ; Zhang J. S. ; Fu X. Z. ; Antonietti M. ; Wang X J. Am. Chem. Soc. 2009, 131, 11658. doi: 10.1021/ja903923s
[25]  13 Wu, S. Z. Synthesis Processing and Modification of GraphiticCarbon Nitride with Enhanced Photocatalytic Activity. Ph. D.Dissertation, South China University of Technology, Guangzhou, 2014.
[26]  14 Ma L. ; Kang X. X. ; Hu S. Z. ; Wang F J. Mol. Catal. (China) 2015, 29, 359. doi: 10.16084/j.cnki.issn1001-3555.2015.04.009
[27]  马琳; 康晓雪; 胡绍争; 王菲. 分子催化, 2015, 29, 359. doi: 10.16084/j.cnki.issn1001-3555.2015.04.009
[28]  15 Zhang J. S. ; Wang B. ; Wang X. C Prog. Chem. 2014, 26, 19. doi: 10.7536/PC130519
[29]  张金水; 王博; 王心晨. 化学进展, 2014, 26, 19d. doi: 10.7536/PC130519
[30]  16 Zhang J. ; Wang Y. ; Jin J. ; Zhang J. ; Lin Z. ; Huang F. ; Yu J G. ACS Appl. Mater. Interfaces 2013, 5, 10317. doi: 10.1021/am403327g
[31]  17 Dong F. ; Zhao Z. ; Xiong T. ; Ni Z. L. ; Zhang W. D. ; Sun Y.J. ; Ho W. K ACS Appl. Mater. Interfaces 2013, 5, 11392. doi: 10.1021/am403653a
[32]  18 Ye C. ; Li J. X. ; Li Z. J. ; Li X. B. ; Fan X. B. ; Zhang L. P. ; Chen B. ; Tung C. H. ; Wu L. Z ACS Catal. 2015, 5, 6973. doi: 10.1021/acscatal.5b02185
[33]  19 Niu P. ; Zhang L. L. ; Liu G. ; Cheng H. M Adv. Funct. Mater. 2012, 22, 4763. doi: 10.1002/adfm.201200922
[34]  21 Cheng N. Y. ; Tian J. Q. ; Liu Q. ; Ge C. J. ; Qusti A. H. ; Asiri A. M. ; Al-Youbi A. O. ; Sun X. P ACS Appl. Mater. Interfaces 2013, 5, 6815. doi: 10.1021/am401802r
[35]  24 Schwinghammer K. ; Mesch M. B. ; Duppel V. ; Ziegler C. ; Senker J. ; Lotsch B. V J. Am. Chem. Soc. 2014, 136, 1730. doi: 10.1021/ja411321s
[36]  26 Zhu K. ; Neale N. R. ; Miedaner A. ; Frank A. J Nano Lett. 2007, 7, 69. doi: 10.1021/nl062000o
[37]  27 Jin Z. L. ; Zhang X. J. ; Li Y. X. ; Li S. B. Lu G X., Catal. Commun 2007, 8, 1267. doi: 10.1016/j.catcom.2006.11.019
[38]  30 Li B. ; Lü G. X Acta Phys. -Chim. Sin. 2013, 29, 1778. doi: 10.3866/PKU.WHXB201305302
[39]  32 Min S. X. ; Lu G. X J. Phys. Chem. C 2012, 116, 19644. doi: 10.1021/jp304022f
[40]  33 Xu J. J. ; Li Y. X. ; Peng S. Q. ; Lu G. X. ; Li S. B Phys. Chem. Chem. Phys. 2013, 15, 7657. doi: 10.1039/C3CP44687E
[41]  34 Wang Y. B. ; Hong J. D. ; Zhang W. ; Rong X Catal. Sci. Technol. 2013, 3, 1703. doi: 10.1039/C3CY20836B
[42]  35 Hao X. Q. ; Jin Z. L. ; Wang F. ; Xu J. ; Min S. X. ; Yuan H. ; Lu G. X Superlatt. Microstruct. 2015, 82, 599. doi: 10.1016/j.spmi.2015.02.028
[43]  36 Hao X. Q. ; Jin Z. L. ; Lu G. X Chem. Lett. 2016, 45, 116. doi: 10.1246/cl.150886
[44]  李波; 吕功煊. 物理化学学报, 2013, 29, 1778. doi: 10.3866/PKU.WHXB201305302
[45]  31 Takanabe K. ; Kamata K. ; Wang X. ; Antonietti M. ; Kubota J. ; Domen K Phys. Chem. Chem. Phys 2010, 12, 13020. doi: 10.1039/C0CP00611D
[46]  37 Ge L. ; Han C. ; Xiao X. ; Guo L Int. J. Hydrog. Energy 2013, 38, 6960. doi: 10.1016/j.ijhydene.2013.04.006
[47]  38 Zhen W. L. ; Ma J. T. ; Lu G. X Appl. Catal. B-Environ. 2016, 190, 12. doi: 10.1016/j.apcatb.2016.02.061

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133