全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 


DOI: 10.3866/PKU.WHXB201510161

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用分子模拟对三种有机磷酸(5-单磷酸腺苷(A)、羟基乙叉二磷酸(B)、2-磷酸基-1, 2, 4-三羧酸丁烷(C))及其与阳离子改性的β-环糊精(HPTEA-β-CD)形成的包合物作为缓蚀剂进行了理论研究,并通过失重法进行了实验验证.量子化学的计算结果表明,三种有机磷酸分子的反应活性主要集中在N、O、P等原子上,其中C分子的反应活性更强.同时采用分子动力学模拟HPTEA-β-CD包合A、B、C分子作为缓蚀剂在Fe(001)表面上的平衡吸附,结果表明C-HPTEA-β-CD的缓蚀效率最强.通过失重法分析,三种缓蚀剂对q235碳钢均有良好的缓蚀性,其中C-HPTEA-β-CD的缓蚀效率最高,达到了91.50%,实验结果与理论计算的分析一致.
The adsorption properties of amino methylene phosphonic acid (A), hydroxyethylenediphosphonic acid (B), sodium phosphonobutanetricarboxylic acid (C) and their inclusions with cationic modified betacyclodextrin (HPTEA-β-CD) for mild steel are evaluated by a combination of quantum chemistry and molecular dynamics simulations. The theoretical conclusions are experimentally verified by the weight loss method. The theoretical results indicate that reaction activity sites of A, B, and C are mainly concentrated at the N, O, P atoms, and the C molecule exhibited the highest reaction activity. Molecular dynamics method presents the equilibrium adsorption behavior of three HPTEA-β-CD inclusion complexes with molecules A, B, and C on an Fe(001) surface, and molecular C-HPTEA-β-CD exhibits the best inhibition performance, according to the adsorption energy. Experimental results of the weight loss show that the three inhibitors exert an excellent corrosion inhibition performance to q235 steel, and C-HPTEA-β-CD exhibits the highest corrosion efficiency of 91.50%, which is in good accordance with theoretical results

References

[1]  霍胜娟; 陈利红; 祝卿; 方建慧. 物理化学学报, 2013, 29, 2565. doi: 10.3866/PKU.WHXB201310294
[2]  3 Bentrah H. ; Rahali Y. ; Chala A. Corrosion Sci 2014, 82, 426. doi: 10.1016/j.corsci.2013.12.018
[3]  4 D?ner A. ; Karda? G. Corrosion Sci 2011, 53, 4223.
[4]  10 Funasaki N. ; Ishikawa S. ; Neya S. Langmuir 2002, 18, 1786. doi: 10.1021/la0108860
[5]  11 Duo J. ; Fletcher H. ; Stenken J. A. Bioelectron 2006, 22, 449. doi: 10.1016/j.bios.2006.05.004
[6]  12 Zou C. ; Zhao P. ; Lei Y. ; Ye H. ; Yao Y. ; Chen M. ; Wang T. Chem. Eng. Technol 2011, 34, 1820.
[7]  13 Fan B. ; Wei G. ; Zhang Z. ; Qiao N. Corrosion Sci 2014, 83, 75. doi: 10.1016/j.corsci.2014.01.043
[8]  17 Challa R. ; Ahuja A. ; Ali J. ; Khar R. K. AAPS Pharm. Sci. Tech 2005, 6, E329.
[9]  19 Yang W. ; Parr R. G. Proc. Natl. Acad. Sci. U. S. A 1985, 82, 6723. doi: 10.1073/pnas.82.20.6723
[10]  22 Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, 1987; pp 85-97.
[11]  23 Maitland, G. C.; Rigby, M.; Smith, E. B. Intermolecular Forces: Their Origin and Determination; Oxford University Press: London, 1987.
[12]  24 Tang Y. ; Yao L. ; Kong C. ; Yang W. ; Chen Y. Corrosion Sci 2011, 53, 2046. doi: 10.1016/j.corsci.2011.01.051
[13]  25 Zheng W. ; Xu J. ; Huang T. ; Chen Z. ; Yang Q. Comput. Theor. Chem 2011, 968, 1. doi: 10.1016/j.comptc.2011.04.031
[14]  7 ?zcanM.; ToffoliD.; üstünelH.; Dehri?.. Corrosion Sci, 2014, 80, 482. doi: 10.1016/j.corsci.2013.11.062
[15]  9 Evans E. W. ; George W. O. ; Platts J. A. J.Mol. Struc. -Theochem 2005, 730, 185. doi: 10.1016/j.theochem.2005.06.026
[16]  16 Sancey B. ; Trunfio G. ; Charles J. ; Badot P. M. ; Crini G. J. Incl. Phenom. Macro 2011, 70, 315. doi: 10.1007/s10847-010-9841-1
[17]  殷开梁; 邹定辉; 杨波; 张雪红; 夏庆; 徐端钧. 计算机与应用化学, 2006, 12, 23.
[18]  30 Zhang J. ; Liu J. ; Yu W. ; Yan Y. ; You L. ; Liu L. Corrosion Sci 2010, 52, 2059. doi: 10.1016/j.corsci.2010.02.018
[19]  14 Rasheed A. Sci. Pharm 2008, 76, 567.
[20]  15 Na N. ; Hu Y. ; Ouyang J. ; Baeyens W. R. G. ; Delanghe J. R. ; Beer T. D. Anal. Chim. Acta 2004, 527, 139.
[21]  20 Gómez B. ; Likhanova N. V. ; Aguilar M. A. D. ; Olivares O. ; Hallen J. M. ; Martínez-Magadán J. M. J. Phys. Chem. A 2005, 109, 8950. doi: 10.1021/jp052188k
[22]  21 Hu S. Q. ; Hu J. C. ; Fan C. C. ; Jia X. L. ; Zhang J. ; Guo W. Y. Acta Chim. Sin 2010, 20, 2051.
[23]  胡松青; 胡建春; 范成成; 贾晓林; 张军; 郭文跃. 化学学报, 2010, 20, 2051.
[24]  28 Fuchs-Godec R. Colloid Surface A 2006, 280, 130. doi: 10.1016/j.colsurfa.2006.01.046
[25]  29 Yin K. L. ; Zou D. H. ; Yang B. ; Zhang X. H. ; Xia Q. ; Xu D. J. Computers and Applied Chemistry 2006, 12, 23.
[26]  1 Awad M. K. ; Mustafa M. R. ; Elnga M. M. A. J. Mol. Struc 2010, 959, 66. doi: 10.1016/j.theochem.2010.08.008
[27]  2 Huo S. J. ; Chen L. H. ; Zhu Q. ; Fang J. H. Acta Phys. -Chim. Sin 2013, 29, 2565. doi: 10.3866/PKU.WHXB201310294
[28]  5 Tan Y. Corrosion Sci 2011, 53, 1145. doi: 10.1016/j.corsci.2011.01.018
[29]  6 Satyanarayana M. G. V. ; Himabindu V. ; Kalpana Y. ; Ravi Kumar M. ; Kumar K. J. Mol. Struc. -Theochem 2009, 912, 113. doi: 10.1016/j.theochem.2009.01.005
[30]  8 Hay B. P. ; Jia C. ; Nadas J. Comput. Theor. Chem 2014, 1028, 72. doi: 10.1016/j.comptc.2013.12.003
[31]  18 Delley B. J. Chem. Phys 1990, 92, 508. doi: 10.1063/1.458452
[32]  26 Obot I. B. ; Obi-Egbedi N. O. ; Umoren S. A. Corrosion Sci 2009, 51, 276. doi: 10.1016/j.corsci.2008.11.013
[33]  27 Pina C. M. ; Putnis C. V. ; Becher U. ; Biswas S. ; Caroll E. C. ; Bosbach D. ; Putnis A. Surf. Sci 2004, 553, 61. doi: 10.1016/j.susc.2004.01.022

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133