全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201703301

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用等体积浸渍法制备了Fe-Co、Fe-Ni、Mo-Co、Mo-Ni双金属催化剂(总金属含量均为10%(w,质量分数),双金属摩尔比均为1:1),考察了其在等离子体条件下氨分解活性,结果表明Fe-Ni双金属催化剂表现出较好的协同作用。在此基础上,进一步考察了Fe/Ni摩尔比对其活性的影响。结果表明:当Fe/Ni摩尔比为6/4时,氨分解活性最好,而且该双金属催化剂稳定性良好。采用N2物理吸附、X射线衍射(XRD)、H2-程序升温还原(H2-TPR)和高分辨透射电子显微镜(HRTEM)对催化剂的物化性质、还原性能、微观形貌等进行了研究。结果表明:活性较好的Fe-Ni双金属催化剂中,Fe与Ni形成尖晶石结构NiFe2O4,该结构有利于Fe和Ni的还原,即活性组分易恢复金属态,这可能是其活性较高的原因。
Bimetallic Fe-Co, Fe-Ni, Mo-Co, and Mo-Ni catalysts, with total metal contents of 10 wt% and bimetallic molar ratios of 1:1, were prepared by the incipient wetness impregnation method and their activities for ammonia decomposition in the presence of plasma were studied. The Fe-Ni bimetallic catalyst exhibited a better synergistic effect than the other three bimetallic catalysts. The effect of the Fe/Ni molar ratio on its catalytic activity was also investigated. A 6:4 Fe/Ni molar ratio resulted in the highest ammonia decomposition activity and stability. The catalysts were characterized by N2 adsorption-desorption, XRD, H2-TPR, and HRTEM. The characterization results indicated that NiFe2O4 with a spinel structure was formed in the optimal Fe-Ni bimetallic catalysts and this structure favors the reduction of Fe and Ni. In other words, it is easy to achieve the metallic state of active components for the Fe-Ni bimetallic catalysts, which could be the reason for the high catalytic activity of bimetallic catalysts for NH3 decomposition

References

[1]  4 Schüth F. ; Palkovits R. ; Schl?gl R. ; Su D. S. Energy Environ. Sci. 2012, 5, 6278. doi: 10.1039/c2ee02865d
[2]  13 Lorenzut B. ; Montini T. ; Bevilacqua M. ; Fornasiero P. Appl. Catal. B-Environ. 2012, 125, 409. doi: 10.1016/j.apcatb.2012.06.011
[3]  王力军; 张春雷; 李爽; 吴通好. 无机化学学报, 1996, 12, 377. doi: 10.3321/j.issn:1001-4861.1996.04.006
[4]  16 Qin W. Q. ; Yang C. R. ; Yi R. ; Gao G. H. J. Nanomater. 2011, 2011, 1. doi: 10.1155/2011/1592
[5]  1 Bell T. E. ; Torrente-Murciano L. Top. Catal. 2016, 59, 1438. doi: 10.1007/s11244-016-0653-4
[6]  2 Chang J. F. ; Xiao Y. ; Luo Z. Y. ; Ge J. J. ; Liu C. P. ; Xing W. Acta Phys. -Chim. Sin. 2016, 32, 1556. doi: 10.3866/PKU.WHXB201604291
[7]  常进法; 肖瑶; 罗兆艳; 葛君杰; 刘长鹏; 邢巍. 物理化学学, 2016, 32, 1556. doi: 10.3866/PKU.WHXB201604291
[8]  3 García-Bordejé E. ; Armenise S. ; Roldán L. Catal. Rev. 2014, 56, 220. doi: 10.1080/01614940.2014.903637
[9]  5 Boisen A. ; Dahl S. ; Norskov J. K. ; Christensen C. H. J. Catal. 2005, 230, 309. doi: 10.1016/j.jcat.2004.12.013
[10]  6 Zhang J. ; Muller J. O. ; Zheng W. Q. ; Wang D. ; Su D. S. ; Schlogl R. Nano Lett. 2008, 8, 2738. doi: 10.1021/nl8011984
[11]  7 Liang C. H. ; Li W. Z. ; Wei Z. B. ; Xin Q. ; Li C. Ind. Eng. Chem. Res. 2000, 39, 3694. doi: 10.1021/ie990931n
[12]  8 Duan X. Z. ; Qian G. ; Zhou X. G. ; Chen D. ; Yuan W. K. Chem. Eng. J. 2012, 207, 103. doi: 10.1016/j.cej.2012.05.100
[13]  9 Wang L. ; Zhao Y. ; Liu C. Y. ; Gong W. M. ; Guo H. C. Chem. Commun. 2013, 49, 3787. doi: 10.1039/c3cc41301b
[14]  10 Wang L. ; Yi Y. H. ; Zhao Y. ; Zhang R. ; Zhang J. L. ; Guo H. C. ACS Catal. 2015, 5, 4167. doi: 10.1021/acscatal.5b00728
[15]  11 Lee M. S. ; Lee J. Y. ; Lee D. W. ; Moon D. J. ; Lee K. Y. Int. J. Hydrog. Energy 2012, 37, 11218. doi: 10.1016/j.ijhydene.2012.04.130
[16]  12 Zheng W. Q. ; Zhang J. ; Ge Q. J. ; Xu H. Y. ; Li W. Z. Appl. Catal. B-Environ. 2008, 80, 98. doi: 10.1016/j.apcatb.2007.11.008
[17]  14 Zhang L. F. ; Li M. ; Ren T. Z. ; Liu X. Y. ; Yuan Z. Y. Int. J.Hydrog. Energy 2015, 40, 2648. doi: 10.1016/j.ijhydene.2014.12.079
[18]  15 Wang L. J. ; Zhang C. L. ; Li S. ; Wu T. H. Chin. J. Inorg. Chem. 1996, 12, 377. doi: 10.3321/j.issn:1001-4861.1996.04.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133