将类丁二炔(10, 12-二十五碳二炔酸)囊泡固载于琼脂糖凝胶制备出了新型辐射变色凝胶复合凝胶材料。利用γ射线辐照研究了所制备凝胶的辐照响应行为,结果显示:当γ辐射剂量在500-2000 Gy内,随着剂量增加,凝胶由无色逐渐变为蓝色,颜色不断加深,采用紫外-可见光分光光度计测试其吸收光谱,发现其主要吸收峰值在660 nm附近,且辐照前后凝胶的吸光度差值与剂量有良好线性关系(相关系数R2 =0.9942)。进一步研究表明:所制备的凝胶材料对γ射线和电子束辐照有相同的剂量响应,且无明显的能量和剂量率依赖性;凝胶的辐射后效应较弱,辐照后24 h,吸光度基本恒定;分次辐照对凝胶剂量计准确性的影响极小;凝胶在0-30℃范围内的响应性基本保持稳定;在辐照后48 h内,并未观察到囊泡有明显扩散效应,显示出良好的稳定性。此外,琼脂糖具有价廉、无毒且易制备为任意形状凝胶的优点,因此该凝胶剂量计有望应用于真实场景的三维剂量分布测定。 A new diacetylene/agarose gel dosimeter composed of agarose gel as the carrier and diacetylene (10, 12-pentacosadiynoic acid) vesicles as the radiochromic agent was prepared and its response behavior to γ-radiation was studied. Ultraviolet-visible spectra showed that the main absorption peak was around 660 nm, and there was a distinct linear relationship (correlation coefficient R2 = 0.9942) between the absorbed dose and absorbance at 660 nm over the absorbed dose range from 500 to 2000 Gy. The diacetylene/agarose gel dosimeter exhibited the same dose response to γ-radiation and an electron beam without energy and dose rate dependency. Furthermore, the effects of temperature, diffusion, fractionated irradiation, and post-radiation on the dosimeter response were carefully investigated. The developed diacetylene/agarose gel dosimeter shows promise to measure the three-dimensional space dose within the range of 500-2000 Gy
References
[1]
1 Gore J. C. ; Kang Y. S. Phys. Med. Biol 1984, 29 (10), 1189. doi: 10.1088/0031-9155/29/10/002
[2]
2 Du Y. ; Wang X. G. Atomic Energy Science and Technology 2014, 48 (8), 1527.
[3]
杜乙; 王贤刚. 原子能科学与技术, 2014, 48 (8), 1527.
[4]
4 Fong P. M. ; Keil D. C. ; Does M. D. ; Gore J. C. Phys. Med. Biol 2001, 46, 3105. doi: 10.1088/0031-9155/46/12/303
[5]
7 Adamovics J. ; Maryanski M. Radiat. Prot. Dosim 2006, 120 (1-4), 107. doi: 10.1093/rpd/nci555
[6]
8 Vandecasteele J. ; Ghysel S. ; Baete S. ; de Deene Y. Phys. Med. Biol 2011, 56 (3), 627. doi: 10.1088/0031-9155/56/3/007
[7]
9 Lu S. ; Jia C. ; Duan X. ; Zhang X. ; Luo F. ; Han Y. ; Huang H. Colloid Surface A 2014, 443, 448. doi: 10.1016/j.colsurfa.2013.11.029
[8]
10 Chanakul A. ; Traiphol N. ; Faisadcha K. ; Traiphol R. J. Colloid Interface Sci 2014, 418, 43. doi: 10.1016/j.jcis.2013.11.083
[9]
11 McLaughlin W. L. ; Chen Y. D. ; Soares C. G. ; Miller A. ; van Dyk G. ; Lewis D. F. Nucl. Instrum. Meth. A 1991, 302, 165. doi: 10.1016/0168-9002(91)90506-L
[10]
12 Butson M. J. ; Yu P. K. N. ; Cheung T. ; Metcalfe P. Mat. Sci. Eng. R 2003, 41 (3), 61. doi: 10.1016/S0927-796X(03)00034-2
[11]
14 Sun P. ; Jiang B. ; He J. ; Liu Q. ; Zheng D. ; Liu L. B. Nucl. Tech 2009, 32 (4), 273.
[12]
王潇; 敖银勇; 赵岩; 孙鹏; 黄玮. 原子能科学技术, 2015.
[13]
18 Al-Sheikhly M. ; McLaughlin W. L. ; Kovacs A. ; Wojnarovits L. ; Christou C. A. ; Christou A. ; Lewis D. F. Int. Soc. Opt. Photonic 1997, 3005, 184. doi: 10.1117/12.271086
[14]
19 Li H. Z. ; Xiao Z. H. ; Lin M. ; Cui Y. ; Chen K. S. ; Ye H. S. Atomic Energy Science and Technology 2008, 42 (3), 253.
20 de Deene Y. ; Venning A. ; Hurley C. ; Healy B. ; Baldock C. Phys. Med. Biol 2002, 47 (14), 2459. doi: 10.1088/0031-9155/47/14/307
[17]
21 Sun X. ; Chen T. ; Huang S. ; Li L. ; Peng H. Chem. Soc. Rev 2010, 39 (11), 4244. doi: 10.1039/c001151g
[18]
22 Lauher J.W. ; Fowler F.W. ; Goroff N. S. Accounts Chem. Res 2008, 41 (9), 1215. doi: 10.1021/ar8001427
[19]
3 Baldock C. ; De Deene Y. ; Doran S. ; Ibbott G. ; Jirasek A. ; Lepage M. ; McAuley K. B. ; Oldham M. ; Schreiner L. J. Phys. Med. Biol 2010, 55 (5), R1. doi: 10.1088/0031-9155/55/5/R01
[20]
5 Jordan K. ; Avvakumov N. Phys. Med. Biol 2009, 54 (22), 6773. doi: 10.1088/0031-9155/54/22/002
[21]
6 Babic S. ; Battista J. ; Jordan K. Phys. Med. Biol 2009, 54 (22), 6791. doi: 10.1088/0031-9155/54/22/003
[22]
13 Liu Q. ; Jiang B. ; He J. ; Sun P. ; Zheng D. ; Wan Y. P. ; Liu L. B. High Power Laser and Particle Beams 2008, 20 (12), 2078.