荧光染料硫黄素T常用于淀粉样纤维聚集过程的定性定量检测。虽然有研究表明,某些抑制淀粉样蛋白质聚集的小分子抑制剂会与硫黄素T相互作用,影响其测试结果。但硫黄素T如何影响淀粉样蛋白质的聚集成核动力学尚不清晰。本文以淀粉样β-蛋白质40 (Aβ40)为模型,系统研究了硫黄素T对Aβ40聚集成核的影响。研究发现:硫黄素T能够显著改变Aβ40的聚集成核动力学,且影响程度与硫黄素T的浓度密切相关。即在低浓度硫黄素T存在下,Aβ40成核速率的延迟时间先随着硫黄素T浓度的升高而缩短,后随着硫黄素T浓度的升高延迟时间反而延长。但延伸的速率却随硫黄素T浓度的升高而缓慢增大。另外,硫黄素T基本不会影响Aβ40的二级结构和纤维形态。同时,等温滴定微量热实验结果表明,硫黄素T结合Aβ40之间的主要作用力为疏水相互作用。据此,本研究提出硫黄素T对Aβ40聚集成核动力学的双重影响机理。这些结果有助于进一步了解硫黄素T与淀粉样蛋白质的作用特点,为今后硫黄素T在Aβ40聚集成核动力学实验中的使用提供参考。 The fluorescent dye thioflavin T (ThT) is widely used for the qualitative and quantitative detection of amyloid fibrils. However, many small-molecular inhibitors have been shown to compete with ThT in binding the fibrils and therefore greatly affect the ThT fluorescence. The effect of ThT on the aggregation kinetics of amyloid proteins is not yet fully understood. Here, using amyloid β-protein 40 (Aβ40) as a model system, we show that ThT significantly alters the aggregation kinetics of Aβ40 in a dose-dependent manner, leading to a decrease-increase trend in the lag time that represents the nucleation rate. Specifically, the lag time decreases as a function of ThT concentration at low ranges, but then begins to increase beyond a specific ThT concentration, which itself increases with Aβ40 concentration. By contrast, the elongation rate slowly increases with ThT concentration. As for the secondary structure and morphology of the fibrils, no significant effects of ThT are observed. Isothermal titration calorimetry suggests that the hydrophobic interaction dominates the binding of ThT to Aβ40. Based on these findings, a working mechanism of the dual effects of ThT on Aβ fibrillization is proposed. These results should aid our understanding of the molecular mechanism of ThT binding with Aβ and allow practical improvements in the measurement of the nucleation kinetics of Aβ fibrillization
References
[1]
8 Palhano F. L. ; Lee J. ; Grimster N. P. ; Kelly J. W. J.Am. Chem. Soc 2013, 135, 7503. doi: 10.1021/ja3115696
3 Liu F. F. ; Dong X. Y. ; He L. ; Middelberg A. P. ; Sun Y. J.Phys. Chem. B 2011, 115, 11879. doi: 10.1021/jp202640b
[4]
5 Nguyen P. ; Derreumaux P. Acc. Chem. Res 2014, 47, 603. doi: 10.1021/ar4002075
[5]
11 Groenning M. J.Chem. Biol 2010, 3, 1. doi: 10.1007/s12154-009-0027-527
[6]
12 Wu C. ; Biancalana M. ; Koide S. ; Shea J. E. J.Mol. Biol 2009, 394, 627. doi: 10.1016/j.jmb.2009.09.056
[7]
13 Heiser V. ; Scherzinger E. ; Boeddrich A. ; Nordhoff E. ; Lurz R. ; Schugardt N. ; Lehrach H. ; Wanker E. E. Proc. Natl. Acad. Sci. U. S. A 2000, 97, 6739. doi: 10.1073/pnas.110138997
[8]
14 Alavez S. ; Vantipalli M. C. ; Zucker D. J. ; Klang I. M. ; Lithgow G. J. Nature 2011, 472, 226. doi: 10.1038/nature09873
[9]
15 D'Amico M. ; Di Carlo M. G. ; Groenning M. ; Militello V. ; Vetri V. ; Leone M. J.Phys. Chem. Lett 2012, 3, 1596. doi: 10.1021/Jz300412v
[10]
16 Xiong N. ; Dong X. Y. ; Zheng J. ; Liu F. F. ; Sun Y. ACS Appl. Mater. Inter 2015, 7, 5650. doi: 10.1021/acsami.5b00915
[11]
17 Du W. J. ; Guo J. J. ; Gao M. T. ; Hu S. Q. ; Dong X. Y. ; Han Y. F. ; Liu F. F. ; Jiang S. Y. ; Sun Y. Sci. Rep 2015, 5, 7992. doi: 10.1038/srep07992
[12]
18 Hellstrand E. ; Boland B. ; Walsh D. M. ; Linse S. ACS Chem. Neurosci 2010, 1, 13. doi: 10.1021/Cn900015v
[13]
20 Wang S. H. ; Liu F. F. ; Dong X. Y. ; Sun Y. J.Phys. Chem. B 2010, 114, 11576. doi: 10.1021/jp1001435
[14]
21 Robbins K. J. ; Liu G. ; Selmani V. ; Lazo N. D. Langmuir 2012, 28, 16490. doi: 10.1021/La303677t
[15]
22 Cerda-Costa N. ; Esteras-Chopo A. ; Aviles F. X. ; Serrano L. ; Villegas V. J.Mol. Biol 2007, 366, 1351. doi: 10.1016/j.jmb.2006.12.007
[16]
23 Schmidt M. ; Rohou A. ; Lasker K. ; Yadav J. K. ; SchieneFischer C. ; Fandrich M. ; Grigorieff N. Proc. Natl. Acad. Sci. U. S. A 2015, 112, 11858. doi: 10.1073/pnas.1503455112
[17]
6 Lindberg D. J. ; Wranne M. S. ; Gatty M. G. ; Westerlund F. ; Esbjorner E. K. Biochem. Biophys. Res. Commun 2015, 458, 418. doi: 10.1016/j.bbrc.2015.01.132
[18]
19 Wang S. H. ; Liu F. F. ; Dong X. Y. ; Sun Y. Biochem. Eng. J. 2012, 62, 70. doi: 10.1016/j.bej.2012.01.005
[19]
7 Hsu J. C. C. ; Chen E. H. L. ; Snoeberger R. C. ; Luh F. Y. ; Lim T. S. ; Hsu C. P. ; Chen R. P. Y. J.Phys. Chem. B 2013, 117, 3459. doi: 10.1021/Jp309331u
[20]
1 Hamley I. W. Chem. Rev 2012, 112, 5147. doi: 10.1021/cr3000994
[21]
2 Liu F. F. ; Dong X. Y. ; Sun Y. Acta Phys. -Chim. Sin 2010, 26, 1643. doi: 10.3866/PKU.WHXB20100613
[22]
9 Hackl E. V. ; Darkwah J. ; Smith G. ; Ermolina I. Eur. Biophys. J 2015, 44, 249. doi: 10.1007/s00249-015-1019-8
[23]
10 Hudson S. A. ; Ecroyd H. ; Kee T. W. ; Carver J. A. FEBS J. 2009, 276, 5960. doi: 10.1111/j.1742-4658.2009.07307.xEJB7307
[24]
4 Liu F. F. ; Ji L. ; Dong X. Y. ; Sun Y. J.Phys. Chem. B 2009, 113, 11320. doi: 10.1021/Jp905580j
[25]
24 Veloso A. J. ; Dhar D. ; Chow A. M. ; Zhang B. ; Tang D. W. ; Ganesh H. V. ; Mikhaylichenko S. ; Brown I. R. ; Kerman K. ACS Chem. Neurosci 2013, 4, 339. doi: 10.1021/cn300171c
[26]
25 Di Carlo M. G. ; Minicozzi V. ; Fodera V. ; Militello V. ; Vetri V. ; Morante S. ; Leone M. Biophys. Chem 2015, 206, 1. doi: 10.1016/j.bpc.2015.06.006