全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 


DOI: 10.3866/PKU.WHXB201603171

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用水热法制备了三种不同形貌的MnO2催化剂,分别为α-MnO2纳米棒,γ-MnO2纳米片和δ-MnO2纳米薄膜组装的微球,考察了纳米材料的形貌结构对催化剂低温选择性催化还原(SCR)反应性能的影响,并利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、N2吸附-脱附、H2程序升温还原(H2-TPR)、NH3程序升温脱附(NH3-TPD)、X射线光电子能谱(XPS)以及拉曼(Raman)光谱等表征手段对催化剂的结构进行了分析。结果表明,在50-250 ℃的温度范围内,γ-MnO2纳米片表现出最优的SCR催化性能,不仅NOx转化率最高而且N2选择性也最好。表征结果表明,比表面积并不是影响MnO2催化性能的主导因素,纳米材料的晶型结构与表面暴露的活性晶面共同决定着催化剂的SCR性能。γ-MnO2纳米片表面暴露的(131)晶面上不仅存在着大量的配位不饱和Mn离子,从而形成了较多的强酸性位点;而且还存在着较多的活性氧物种。这些活性位点可以使得NH3和NOx的活化过程在较低温度下进行。高浓度的流动性氧以及高价态的Mn3+和Mn4+也使得催化剂的氧化还原反应更易发生。
α-MnO2 nanorods,γ-MnO2 nanosheets,and δ-MnO2 nanofilm-assembled microspheres wereprepared using a hydrothermal method and evaluated as catalysts for the selective catalytic reduction(SCR)of nitrogen oxides(NOx).They were also structurally characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),N2 adsorption- desorption,temperatureprogrammedreduction with hydrogen(H2-TPR),temperature-programmed desorption of ammonia(NH3-TPD),X-ray photoelectron spectroscopy(XPS),and Raman spectroscopy.The γ-MnO2 nanosheets performed thebest for the reduction of NOx and selectivity of N2,while the α-MnO2 nanorods performed the worst.Structuralanalysis indicated that the main factor determining the catalytic activities of the nanomaterials was not thespecific surface area but the crystal structure and the exposed active crystals.The γ-MnO2 nanosheets performedbest because their exposed(131)planes contained multiple Mn cations in coordinatively unsaturatedenvironments,which formed numerous strongly acidic sites.They also benefited from active oxygen species.The active sites allowed the activation of NH3 and NOx at lower temperatures.Moreover,high concentrationsof liquid oxygen and Mn cations at high oxidation states facilitated the redox reactions

References

[1]  5 Wang X. ; Zheng Y. Y. ; Xu Z. ; Liu X. B. ; Zhang Y. B. Catal. Commun 2014, 50, 34. doi: 10.1016/j.catcom.2014.02.016
[2]  戴韵; 李俊华; 彭悦;唐幸福. 物理化学学报, 2012, 28, 1771. doi: 10.3866/PKU.WHXB201204175
[3]  14 Li Y. ; Shen W. J Sci. China Chem 2012, 42, 376. doi: 10.1007/s11426-012-4565-2
[4]  18 Lu, J. Controllable Sythesis and Catalytic Property of α-MnO2 Nanopaticles. Master Dissertation. Hebei Normal University, Shijiazhuang, 2010.
[5]  20 Peng Y. ; Chang H. Z. ; Dai Y. Proc. Environ. Sci 2013, 18, 384. doi: 10.1016/j.proenv.2013.04.051
[6]  24 Wang C. ; Sun L. ; Cao Q. Q. Appl. Catal. B: Environ. 2001, 101, 598. doi: 10.1016/j.apcatb.2010.10.034
[7]  25 Yuan R. M. ; Fu G. ; Xu X. ; Wan H. L Phys. Chem. Chem. Phys 2011, 13, 453. doi: 10.1039/c0cp00256a
[8]  30 Kang M. ; Park E. D. ; Kim J. M. ; Yie J. E. Appl. Catal. A: Gen 2007, 327, 261. doi: 10.1016/j.apcata.2007.05.024
[9]  31 Yang Y. X. ; Ma J.W. ; Yu C. L. ; Sun M. T. ; Huang B. C. ; Wu Y. M. Acta Scientiae Circumstantiae 2015. doi: 10.13671/j.hjkxxb.2015.0754
[10]  杨颖欣; 马杰文; 喻成龙; 孙梦婷; 黄碧纯;吴友明. 环境科学学报, 2015. doi: 10.13671/j.hjkxxb.2015.0754
[11]  32 Fu M. F. ; Li C. T. ; Lu P. ; Qu L. ; Zhang M. Y. ; Zhou Y. ; Yu M. G. Catal. Sci. Technol 2014, 4, 14. doi: 10.1039/c3cy00414g
[12]  33 Park K. ; Lee S. ; Kim S. ; Kwon D. ; Hong S. Catal. Lett. 2013, 143, 246. doi: 10.1007/s10562-012-0952-8
[13]  34 Jiao J. Z. ; Li S. H. ; Huang B. C. Acta Phys. -Chim. Sin. 2015, 31, 1383. doi: 10.3866/PKU.WHXB201504292
[14]  35 Li J.W. ; Song C. ; Liu S. T Acta Chim. Sin 2012, 70, 2347. doi: 10.6023/A12080562
[15]  2 Tian W. ; Yang H. S. ; Fan X. Y. J.. Hazard. Mater 2011, 188, 105. doi: 10.1016/j.jhazmat.2011.01.078
[16]  3 Pourkhalila M. ; Moghaddama A. Z. ; Rashidib A. ; Towfighia J. ; Mortazavic Y. Appl. Surf. Sci 2013, 279, 250. doi: 10.1016/j.apsusc.2013.04.076
[17]  6 Pan S.W. ; Luo H. C. ; Li L. ; Wei Z. L. ; Huang B. C. J. Mol. Catal. A 2013, 377, 154. doi: 10.1016/j.molcata.2013.05.009
[18]  7 Fang D. ; Xie J. L. ; Mei D. ; Zhang Y. M. ; He F. ; Liu X. Q. ; Li Y. M. RSC Adv 2014, 4, 25540. doi: 10.1039/c4ra01044b
[19]  8 Cai S. X. ; Zhang D. S. ; Shi L. Y. Nanoscale 2014, 6, 7346. doi: 10.1039/c4nr00475b
[20]  9 Shu Z. ; Huang W. M. ; Hua Z. L. ; Zhang L. X. ; Cui X. Z. ; Chen Y. ; Chen H. R. ; Wei C. Y. ; Wang Y. X. ; Fan X. Q. ; Yao H. L. ; He D. N. ; Shi J. L. J.. Mater. Chem. A 2013, 1, 10218. doi: 10.1039/c3ta10971b
[21]  李勇; 申文杰. 中国科学:化学, 2012, 42, 376. doi: 10.1007/s11426-012-4565-2
[22]  15 Li Y. ; Liu Q. Y. ; Shen W. J Dalton Trans 2011, 40, 5811. doi: 10.1039/c0dt01404d
[23]  16 Liang S. H. ; Teng F. ; Bulgan G. ; Zong R. L. ; Zhu Y.. F. J. Phys. Chem. C 2008, 112, 5307. doi: 10.1021/jp0774995
[24]  17 Duan X. C. ; Yang J. Q. ; Gao H. Y. ; Zheng W. J Cryst. Eng. Comm 2012, 14, 4196. doi: 10.1039/c2ce06587h
[25]  芦佳. α-MnO2纳米颗粒的可控制备及催化性能研究[D]石家庄:河北师范大学, 2010.
[26]  19 Bai B. Y. ; Li J. H. ; Hao J. M. Appl. Catal. B: Environ. 2015, 164, 241. doi: 10.1016/j.apcatb.2014.08.044
[27]  张洁; 张江浩; 张长斌;贺泓. 物理化学学报, 2015, 31, 353. doi: 10.3866/PKU.WHXB201412081
[28]  23 Yang C. ; Liu X. Q. ; Huang B. C. ; Wu Y. M Acta Phys. -Chim. Sin 2014, 30, 1895. doi: 10.3866/PKU.WHXB201407162
[29]  杨超; 刘小青; 黄碧纯; 吴友明. 物理化学学报, 2014, 30, 1895. doi: 10.3866/PKU.WHXB201407162
[30]  28 Kijlstra W. S. ; Brands D. S. ; Poels E. K. ; Bliek A. J. Catal. 1997, 171, 208. doi: 10.1006/jcat.1997.1788
[31]  26 Fang C. ; Zhang D. S. ; Cai S. X. ; Zhang L. ; Huang L. ; Li H. R. ; Maitarad P. ; Shi L. Y. ; Gao R. H. ; Zhang J. P. Nanoscale 2013, 5, 9199. doi: 10.1039/c3nr02631k
[32]  29 Chen F. ; Huang B. C. ; Yang Y. X. ; Liu X. Q. ; Yu C. L 2015, 31 2375, 2375. doi: 10.3866/PKU.WHXB201510201
[33]  李经纬; 宋灿;刘善堂. 化学学报, 2012, 70, 2347. doi: 10.6023/A12080562
[34]  36 Chen R. X. ; Yu J. G. ; Xiao W. J. Mater. Chem. A 2013, 1, 11682. doi: 10.1039/c3ta12589k
[35]  37 Su Y. X. ; Fan B. X. ; Wang L. S. ; Liu Y. F. ; Huang B. C. ; Fu M. L. ; Chen L. M. ; Ye D. Q. Catal. Today 2013, 201, 115. doi: 10.1016/j.cattod.2012.04.063
[36]  1 Wang L. S. ; Huang B. C. ; Su Y. X. Chem. Eng. J. 2012, 192, 232. doi: 10.1016/j.cej.2012.04.012
[37]  4 Lian Z. H. ; Liu F. D. ; He H. ; Shi X. Y. ; Mo J. S. ; Wu Z. B. Chem. Eng. J. 2014, 250, 390. doi: 10.1016/j.cej.2014.03.065
[38]  10 Fang C. ; Zhang D. S. ; Cai S. X. ; Zhang L. ; Huang L. ; Li H. R. ; Maitarad P. ; Shi L. Y. ; Gao R. H. ; Zhang J. P. Nanoscale 2013, 5, 9199. doi: 10.1039/c3nr02631k
[39]  11 Zuo J. L. ; Chen Z. H. ; Wang F. R. ; Yu Y. H. ; Wang L. F. ; Li X. H. Ind. Eng. Chem. Res 2014, 53, 2647. doi: 10.1021/ie404224y
[40]  12 Sun M. ; Lan B. ; Yu L. ; Ye F. ; Song W. ; He J. ; Diao G. Q. ; Zheng Y. Y. Mater. Lett 2012, 86, 18. doi: 10.1016/j.matlet.2012.07.011
[41]  13 Dai Y. ; Li J. H. ; Peng Y. ; Tang X. F Acta Phys. -Chim. Sin. 2012, 28, 1771. doi: 10.3866/PKU.WHXB201204175
[42]  21 Andreoli S. ; Deorsola F. A. ; Galletti C. ; Pirone R. Chem. Eng. J 2015, 278, 174. doi: 10.1016/j.cej.2014.11.023
[43]  22 Zhang J. ; Zhang J. H. ; Zhang C. B. ; He H. Acta Phys. -Chim. Sin 2015, 31, 353. doi: 10.3866/PKU.WHXB201412081
[44]  27 Lu X. N. ; Song C. Y. ; Chang C. C. ; Teng Y. X. ; Tong Z. S. ; Tang X. L. Ind. Eng. Chem. Res 2014, 53, 11604. doi: 10.1021/ie5016969
[45]  陈锋; 黄碧纯; 杨颖欣; 刘小青;喻成龙. 物理化学学报, 2015, 31, 2375. doi: 10.3866/PKU.WHXB201510201
[46]  焦金珍; 李时卉;黄碧纯. 物理化学学报, 2015, 31, 1383. doi: 10.3866/PKU.WHXB201504292

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133