全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 


DOI: 10.3866/PKU.WHXB201705312

Full-Text   Cite this paper   Add to My Lib

Abstract:

水是生命之源,在人类生存和社会生产中扮演了极其重要的角色,然而水的反常性质及在物理、化学、生物过程等领域中的作用和机理却仍存在很多谜团。近年来,水科学研究已逐渐成为科学研究的热点之一。地球上的水大部分是体相水,但在自然界和科学研究中,水同样会以界面/受限水的形式参与到物理、化学过程中。纳米受限水普遍存在于自然及合成的纳米环境中,受限水与体相水的差异主要体现在水的动力学及热力学性质的改变,受限水的存在对材料在生物、环境、地质和传感器等领域的应用也具有深远的影响。本文对纳米受限水的结构进行分析,并归纳了纳米受限水的动力学、热力学以及电学特性,对纳米受限水的研究手段及发展历程进行分类总结,举例介绍了纳米受限水在环境和能源等领域的潜在应用,最后对受限水研究进展及存在问题进行了总结,并对其后续发展进行展望。
Water is an indispensable resource for all biological life on earth. It is crucial for the existence of human beings and civilizations have historically thrived around water bodies. However, there still remains an enormous cognitive gap about the abnormal properties of water, its influence in the field of physics, chemistry, and biology, and the underlying mechanism of its effect on natural processes. Hydroscience has gradually entered the arena for scientific discussion and transformed into a main research area. While the majority of water on earth exists as bulk water, it typically participates in different physical and chemical processes in the form of interface/confined water under both natural and scientific research conditions. Nanoconfined water generally exists in natural and synthetic nanoscale environments, and its distinction from bulk water is mainly reflected in its dynamic and thermodynamic properties. The existence of confined water also has a profound impact on the development of devices composed of nanomaterials and their applications in the fields of biology, environmental science, geology etc. In this paper, the hydrogen bond structure of nanoconfined water has been analyzed and its dynamic, thermodynamic, and electrical properties have been generalized. A summary of the different research methods and their corresponding developmental history, together with examples of the application potential of nanoconfined water in the fields of environmental and material science have been presented. A summary of the progress made and existing problems in the research area of confined water is given along with the prospects for future developments

References

[1]  6 Kumar P. ; Han S. ; Stanley H. E. J. Phys.-Condes. Matter. 2009, 21 (50) doi: 10.1088/0953-8984/21/50/504108
[2]  7 Laage D. ; Thompson W. H. J. Chem. Phys. 2012, 136 (4) doi: 10.1063/1.3679404
[3]  8 Gordillo M. C. ; Martí J. Chem. Phys. Lett. 2000, 329 (5-6), 341. doi: 10.1016/S0009-2614(00)01032-0
[4]  9 Kocherbitov V. J. Phys. Chem. C 2008, 112 (43), 16893. doi: 10.1021/jp805247b
[5]  10 Song R. ; Feng W. ; Jimenez-Cruz C. A. ; Wang B. ; Jiang W. ; Wang Z. ; Zhou R. RSC Adv. 2015, 5 (1), 274. doi: 10.1039/c4ra13736a
[6]  11 Bernardina S. D. ; Paineau E. ; Brubach J. B. ; Judeinstein P. ; Rouziere S. ; Launois P. ; Roy P. J. Am. Chem. Soc. 2016, 138 (33), 10437. doi: 10.1021/jacs.6b02635
[7]  12 Odelius M. ; Bernasconi M. ; Parrinello M. Phys. Rev. Lett. 1997, 78 (14), 2855. doi: 10.1103/PhysRevLett.78.2855
[8]  13 Agrawal K. V. ; Shimizu S. ; Drahushuk L. W. ; Kilcoyne D. ; Strano M. S. Nat. Nanotechnol. 2017, 12 (3), 267. doi: 10.1038/nnano.2016.254
[9]  15 Sun C. K. ; You B. ; Huang Y. R. ; Liu K. H. ; Sato S. ; Irisawa A. ; Imamura M. ; Mou C. Y. Opt. Lett. 2015, 40 (12), 2731. doi: 10.1364/ol.40.002731
[10]  16 Fernandez M. S. ; Peeters F. M. ; Neek-Amal M. Phys. Rev. B 2016, 94 (4) doi: 10.1103/PhysRevB.94.045436
[11]  18 Takata K. ; Matsuzaki T. ; Tajika Y. ; Ablimit A. ; Suzuki T. ; Aoki T. ; Hagiwara H. Acta Histochemica Et Cytochemica 2005, 38 (3), 199. doi: 10.1267/ahc.38.199
[12]  20 Byl O. ; Liu J. C. ; Wang Y. ; Yim W. L. ; Johnson J. K. ; Yates J. T. J. Am. Chem. Soc. 2006, 128 (37), 12090. doi: 10.1021/ja057856u
[13]  22 Xu K. M. ; Liu Y. J. ; Liu H. S. Zeitschrift Für Anorganische Und Allgemeine Chemie 2012, 43 (32), 1018. doi: 10.1002/zaac.201200023
[14]  27 Hummer G. ; Rasaiah J. C. ; Noworyta J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535
[15]  34 Bonthuis D. J. ; Gekle S. ; Netz R. R. Langmuir 2012, 28 (20), 7679. doi: 10.1021/la2051564
[16]  35 Wang D. W. ; Du A. ; Taran E. ; Lu G. Q. ; Gentle I. R. J. Mater. Chem. 2012, 22 (39), 21085. doi: 10.1039/c2jm34476a
[17]  43 Marti J. ; Sala J. ; Guardia E. ; Gordillo M. C. Phys. Rev. E 2009, 79 (3) doi: 10.1103/PhysRevE.79.031606
[18]  49 Harrach M. F. ; Drossel B. ; Winschel W. ; Gutmann T. ; Buntkowsky G. J. Phys. Chem. C 2015, 119 (52), 28961. doi: 10.1021/acs.jpcc.5b09537
[19]  50 Zhao M. ; Yang X. J. Phys. Chem. C 2015, 119 (37), 21664. doi: 10.1021/acs.jpcc.5b03307
[20]  51 Ma J. ; Yang M. ; Yu F. ; Zheng J. Sci. Rep. 2015, 5 doi: 10.1038/srep13578
[21]  54 Phan A. ; Cole D. R. ; Weiss R. G. ; Dzubiella J. ; Striolo A. ACS Nano 2016, 10 (8), 7646. doi: 10.1021/acsnano.6b02942
[22]  3 Crupi V. ; Fontana A. ; Majolino D. ; Mele A. ; Melone L. ; Punta C. ; Rossi B. ; Rossi F. ; Trotta F. ; Venuti V. J. Inclusion Phenom. Macrocyclic Chem. 2014, 80 (1-2), 69. doi: 10.1007/s10847-014-0387-5
[23]  4 Falk K. ; Sedlmeier F. ; Joly L. ; Netz R. R. ; Bocquet L. Nano Lett. 2010, 10 (10), 4067. doi: 10.1021/nl1021046
[24]  37 Renou R. ; Szymczyk A. ; Maurin G. ; Malfreyt P. ; Ghoufi A. J. Chem. Phys. 2015, 142 (18) doi: 10.1063/1.4921043
[25]  38 Artemov V. G. Meas. Sci. Technol. 2017, 28 (1) doi: 10.1088/1361-6501/28/1/014013
[26]  47 Acik M. ; Mattevi C. ; Gong C. ; Lee G. ; Cho K. ; Chhowalla M. ; Chabal Y. J. ACS Nano 2010, 4 (10), 5861. doi: 10.1021/nn101844t
[27]  48 Dai H. ; Liu S. ; Zhao M. ; Xu Z. ; Yang X. Microfluid. Nanofluid. 2016, 20 (10) doi: 10.1007/s10404-016-1805-3
[28]  52 Li X. ; Xu W. ; Tang M. ; Zhou L. ; Zhu B. ; Zhu S. ; Zhu J. Proc. Natl. Acad. Sci. U.S.A. 2016, 113 (49), 13953. doi: 10.1073/pnas.1613031113
[29]  55 Wen L. ; Jiang L. National Science Review 2014, 1 (1), 144. doi: 10.1093/nsr/nwt001
[30]  1 Raviv U. ; Laurat P. ; Klein J. Nature 2001, 413 (6851), 51. doi: 10.1038/35092523
[31]  2 Bampoulis P. ; Witteveen J. P. ; Kooij E. S. ; Lohse D. ; Poelsema B. ; Zandvliet H. J. W. ACS Nano 2016, 10 (7), 6762. doi: 10.1021/acsnano.6b02333
[32]  5 Nakamura Y. ; Ohno T. Mater. Chem. Phys. 2012, 132 (2-3), 682. doi: 10.1016/j.matchemphys.2011.11.086
[33]  14 Crupi V. ; Interdonato S. ; Longo F. ; Majolino D. ; Migliardo P. ; Venuti V. J. Raman Spectrosc. 2008, 39 (2), 244. doi: 10.1002/jrs.1857
[34]  17 Chialvo A. A. ; Vlcek L. ; Cummings P. T. Mol. Phys. 2015, 113 (9-10), 1033. doi: 10.1080/00268976.2014.968228
[35]  19 Yang X. ; Yang X. ; Liu S. Chin. J. Chem. Eng. 2015, 23 (10), 1587. doi: 10.1016/j.cjche.2015.05.015
[36]  21 Zhu Y. ; Wang F. ; Bai J. ; Zeng X. C. ; Wu H. Phys. Chem. Chem. Phys. 2016, 18 (32), 22039. doi: 10.1039/C6CP03061K
[37]  23 Algara-Siller G. ; Lehtinen O. ; Wang F. C. ; Nair R. R. ; Kaiser U. ; Wu H. A. ; Geim A. K. ; Grigorieva I. V. Nature 2015, 519 (7544), 443. doi: 10.1038/nature14295
[38]  24 Chen J. ; Schusteritsch G. ; Pickard C. J. ; Salzmann C. G. ; Michaelides A. Phys. Rev. Lett. 2016, 116 (2) doi: 10.1103/PhysRevLett.116.025501
[39]  25 Qian Z. ; Wei G. J. Phys. Chem. A 2014, 118 (39), 8922. doi: 10.1021/jp500989t
[40]  26 Agre P. Néphrologie 1996, 17 (7), 409. doi: 10.1038/ki.1995.389
[41]  28 Radha B. Nature 2016, 538 (7624), 222. doi: 10.1038/nature19363
[42]  29 Mosaddeghi H. ; Alavi S. ; Kowsari M. H. ; Najafi B. J. Chem. Phys. 2012, 137 (18) doi: 10.1063/1.4763984
[43]  30 Moulod M. ; Hwang G. J. Appl. Phys. 2016, 120 (19) doi: 10.1063/1.4967797
[44]  31 Hummer G. ; Rasaiah J. C. ; Noworyta J. P. Nature 2001, 414 (6860), 188. doi: 10.1038/35102535
[45]  32 Radha B. ; Esfandiar A. ; Wang F. C. ; Rooney A. P. ; Gopinadhan K. ; Keerthi A. ; Mishchenko A. ; Janardanan A. ; Blake P. ; Fumagalli L. Nature 2016, 538 (7624) doi: 10.1038/nature19363
[46]  33 Diallo S. ; Mamontov E. ; Nobuo W. ; Inagaki S. ; Fukushima Y. Phys. Rev. E 2012, 86 (2), 021506. doi: 10.1103/PhysRevE.86.021506
[47]  36 Nagy G. ; Gordillo M. C. ; Guardia E. ; Marti J. J. Phys. Chem. B 2007, 111 (43), 12524. doi: 10.1021/jp073193m
[48]  39 Muscatello J. ; Jaeger F. ; Matar O. K. ; Mueller E. A. ACS Appl. Mater. Interfaces 2016, 8 (19), 12330. doi: 10.1021/acsami.5b12112
[49]  40 Neek-Amal M. ; Peeters F. M. ; Grigorieva I. V. ; Geim A. K. ACS Nano 2016, 10 (3), 3685. doi: 10.1021/acsnano.6b00187
[50]  41 Zhu Y. ; Wang F. ; Bai J. ; Zeng X. C. ; Wu H. ACS Nano 2015, 9 (12), 12197. doi: 10.1021/acsnano.5b06572
[51]  42 Mozaffari F. Mol. Simul. 2016, 42 (17), 1475. doi: 10.1080/08927022.2016.1204659
[52]  44 Elamin K. ; Jansson H. ; Kittaka S. ; Swenson J. Phys. Chem. Chem. Phys. 2013, 15 (42), 18437. doi: 10.1039/c3cp51786a
[53]  45 Lei Y. ; Child J. R. ; Tsavalas J. G. Colloid. Polym. Sci. 2013, 291 (1), 143. doi: 10.1007/s00396-012-2693-z
[54]  46 Suzuki Y. ; Steinhart M. ; Graf R. ; Butt H.-J. ; Floudas G. J. Phys. Chem. B 2015, 119 (46), 14814. doi: 10.1021/acs.jpcb.5b08751
[55]  53 Dai H. ; Xu Z. ; Yang X. J. Phys. Chem. C 2016, 120 (39), 22585. doi: 10.1021/acs.jpcc.6b05337
[56]  56 Calvo A. ; Yameen B. ; Williams F. J. ; Soler-Illia G. J. A. A. ; Azzaroni O. J. Am. Chem. Soc. 2009, 131 (31), 10866. doi: 10.1021/ja9031067
[57]  57 Liu L. ; Zhang L. ; Sun Z. ; Xi G. Nanoscale 2012, 4 (20), 6279. doi: 10.1039/c2nr31847d
[58]  58 Yang X. ; Zhu J. ; Qiu L. ; Li D. Adv. Mater. 2011, 23 (25), 2833. doi: 10.1002/adma.201100261

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133