在288.15-328.15 K温度范围内,测量了不同浓度的氨基酸离子液体[C2mim][Ala]水溶液的密度和粘度,根据Jones-Dole方程得到了较大正值的粘度B系数并且dB/dT < 0。借助Feakins理论,计算了溶质对溶液粘滞流动活化自由能贡献Δμ2≠0,根据Δμ2≠0随温度的线性变化,进而得到流动活化熵ΔS2≠0和活化焓ΔH2≠0;在Eyring液体粘度的过渡态理论基础上,提出了预测离子液体[C2mim][Ala]水溶液粘度的半经验新方法,其预测值与相应的实验值很好的一致。 The density and viscosity of aqueous solutions of an ionic liquid (IL) based on alanine, [C2mim] [Ala], with various molalities were measured in the temperature range of T=288.15-328.15 K with intervals of 5 K. From the Jones-Dole equation, a viscosity B-coefficient with a large positive value and dB/dT < 0 were obtained. According to Feakins, the contribution of the solute to the activation free energy for viscous flow of the solution, Δμ2≠0, was obtained. The relationship between Δμ2≠0 and temperature was linear, allowing the standard molar activation entropy, ΔS2≠0, and enthalpy, ΔH2≠0, to be obtained. On the basis of Eyring's theory, a new semi-empirical method to estimate the viscosity of aqueous[C2mim] [Ala] was proposed. The values estimated using this method agreed well with the corresponding experimental ones
References
[1]
3 Rantwijk F. V. ; Sheldon R. A. Chem. Rev. 2007, 38 (107), 2757. doi: 10.1021/cr050948h
[2]
10 Fukumoto K. ; Yoshizawa M. ; Ohno H. J.Am. Chem. Soc. 2005, 127, 2398. doi: 10.1021/ja043451i
[3]
18 Feakins D. ; Freemantle D. J. ; Lawrence K. G. J. Chem. Soc.Faraday Trans. I 1974, 70, 795. doi: 10.1039/f19747000795
[4]
19 Feakins D. ; Waghorne W. E. ; Lawrence K. G. J. Chem. Soc.Faraday Trans. I 1986, 82, 563. doi: 10.1039/f19868200563
[5]
20 Lide D. R. Handbook of Chemistry and Physics 82nd ed. Boca Raton: CRC Press, 2001.
[6]
21 Huang Z. Q. An Introduction to the Theory of Electrolyte Solution revised ed. Beijing: Science Press, 1983.
25 Liu W. B. ; Wu Y. P. ; Wang J. J. ; Lu J. S. Acta Phys.-Chim.Sin. 1995, 11, 590. doi: 10.3866/PKU.WHXB19950705
[10]
27 Hu Y. F. ; Lee H. Electrochim Acta 2003, 48, 1789. doi: 10.1016/j.electacta.2003.03.002
[11]
28 Hu Y. F. Chem. Eng. Sci. 2004, 59, 2457. doi: 10.1016/j.ces.2003.11.005
[12]
1 Zhang S. ; Wang J. ; Lu X. ; Zhou Q. Structures and Interactions of Ionic Liquids Heidelberg, Germany: Springer, 2014. doi: 10.1007/978-3-642-38619-0
[13]
2 Greaves T. L. ; Drummond C.J. Chem. Rev. 2007, 108 (1), 206. doi: 10.1021/cr068040u
[14]
4 Tariq M. ; Freire M. G. ; Saramago B. ; Coutinho J. A. P. ; Lopes J. N. C. ; Rebelo L. P. N. Chem. Soc. Rev. 2011, 41, 829. doi: 10.1039/c1cs15146k
[15]
5 Sun X. ; Luo H. ; Dai S. Chem. Rev. 2012, 112, 2100. doi: 10.1021/cr200193xd
[16]
6 Riyazuddeen ; Usmani M. A. J.Chem. Eng. Data 2011, 56, 3504. doi: 10.1021/je2000205
[17]
7 Liu W. ; Zhao T. ; Zhang Y. ; Wang H. ; Yu M. J.Solut. Chem. 2006, 35, 1337. doi: 10.1007/s10953-006-9064-7
[18]
8 Tao G. H. ; He L. ; Liu W. S. ; Xu L. ; Xiong W. ; Wang T. ; Kou Y. Green Chem. 2006, 8, 639. doi: 10.1039/b600813e
[19]
9 Fukumoto K. ; Ohno H. Chem. Commun. 2006, 3081. doi: 10.1039/b606613e
[20]
11 Ohno H. ; Fukumoto K. Acc. Chem. Res. 2007, 40, 1122. doi: 10.1021/ar700053z
[21]
12 Tong J. ; Hong M. ; Chen Y. ; Wang H. ; Guan W. ; Yang J. Z. J.Chem. Thermodyn. 2012, 54, 352. doi: 10.1016/j.jct.2012.05.012
[22]
13 Hong M. ; Sun A. ; Yang Q. ; Guan W. ; Tong J. ; Yang J. Z. J.Chem. Thermodyn. 2013, 67, 91. doi: 10.1016/j.jct.2013.07.008
[23]
14 Hong M. ; Sun A. ; Liu C. ; Guan W. ; Tong J. ; Yang J. Z. Ind.Eng. Chem. Res. 2013, 52, 15679. doi: 10.1021/ie402890r
[24]
15 Hong M. ; Liu R. J. ; Yang H. X. ; Guan W. ; Tong J. ; Yang J.Z. J.Chem. Thermodyn. 2014, 70, 214. doi: 10.1016/j.jct.2013.11.004
[25]
16 Tong J. ; Liu Q. S. ; Zhang P. ; Yang J. Z. J.Chem. Eng. Data 2007, 52, 1497. doi: 10.1021/je700102g
[26]
17 Jenkins H. D. B. ; Marcus Y. Chem. Rev. 1995, 95, 2695. doi: 10.1021/cr00040a004
[27]
22 Harned H. S. ; Owen B. B. The Physical Chemistry of Electrolyte Solutions 3rd ed. New York: Reinhold, 1958. doi: 10.1149/1.2427250
[28]
23 Eyring H. J.Chem. Phys. 1936, 4, 283. doi: 10.1063/1.1749836
[29]
24 Liu W. B. ; Wang J. J. ; Wang C. L. ; Lu J. S. Acta Phys.-Chim.Sin. 1992, 8, 742. doi: 10.3866/PKU.WHXB19920606