通过一种结合了CO辅助合成Pt3Ni纳米立方粒子和单原子层Cu壳欠电位沉积再置换为Pd的方法,成功制备出了具有单原子层Pd壳和Pt3Ni纳米立方粒子核结构的Pt3Ni@Pd/C催化剂。电感耦合等离子体元素分析、X射线衍射和透射电子显微镜法被用于研究表征此种Pt3Ni@Pd/C催化剂,结果显示大部分Pt3Ni纳米粒子的表面都由{100}族的晶面所构成。而且在这些{100}族的晶面上,单原子层Pd壳通过电沉积的外延生长,也获得了{100}族的晶面。本文进一步对Pt3Ni@Pd/C作为甲酸氧化电催化剂的性能进行了研究,并与商业Pd/C和原Pt3Ni/C催化剂进行了比较。结果显示,由于Pt3Ni@Pd/C的单原子层Pd壳的结构和所暴露出的Pd{100}族的晶面,Pt3Ni@Pd/C催化剂具有优异的甲酸氧化电催化性能。与原Pt3Ni/C催化剂相比较,Pt3Ni@Pd/C催化剂的贵金属质量比活性提高到了7.5倍。此外,与商业Pd/C催化剂相比,Pt3Ni@Pd/C催化剂的比表面活性和Pd质量比活性也分别提高到了2.5和8.3倍。 We designed and synthesized carbon-supported cubic Pt3Ni nanoparticles (NPs) with Pd monolayer shells (Pt3Ni@Pd/C) by a two-step method: generally, CO-assisted preparation of cubic Pt3Ni NPs, Pd monolayer deposition through underpotential deposition of a Cu monolayer, and displacement of Cu with Pd. The as-synthesized Pt3Ni@Pd/C catalyst was characterized with inductively coupled plasma elemental analysis, X-ray diffraction, and transmission electron microscopy. Most Pt3Ni NPs had a cubic nanostructure enclosed by {100} facets, on which the Pd monolayer shells were deposited epitaxially via electrodeposition, by which the Pd monolayers gained the crystallographic orientation of the {100} facets. We then used Pt3Ni@Pd/C as an electrocatalyst for formic acid oxidation (FAO), comparing it with commercial Pd/C and the pristine Pt3Ni/C catalysts. The Pt3Ni@Pd/C exhibited superior electrocatalytic performance because of its monolayer structure and exposed Pd{100} facets. The noble-metal mass activity of the Pt3Ni/C with the deposited Pd monolayer shell was 7.5 times greater than that of the Pt3Ni/C catalyst alone. Moreover, the area-specific and Pd mass activities of Pt3Ni@Pd/C were 2.5 and 8.3 times greater than those of the commercial Pd/C catalyst, respectively
References
[1]
6 Wang S. ; Kristian N. ; Jiang S. ; Wang X. Electrochem. Commun 2008, 10, 961. doi: 10.1016/j.elecom.2008.04.018
[2]
9 Larsen, R.; Ha, S.; Zakzeski, J.; Masel, R. I. J. Power Sources 2006, 157, 78. doi: 10.1016/j.jpowsour.2005.07.066
[3]
10 Li H. ; Sun G. ; Jiang Q. ; Zhu M. ; Sun S. ; Xin Q. Electrochem. Commun 2007, 9, 1410. doi: 10.1016/j.elecom.2007.01.032
[4]
12 Rice C. ; Ha S. ; Masel R. I. ; Wieckowski A. J. Power Sources 2003, 115, 229. doi: 10.1016/S0378-7753(03)00026-0
[5]
14 Morales-Acosta D. ; Ledesma-Garcia J. ; Godinez L. A. ; Rodríguez H. G. ; Alvarez-Contreras L. ; Arriaga L. G. J. Power Sources 2010, 195, 461. doi: 10.1016/j.jpowsour.2009.08.014
[6]
4 Rice C. ; Ha S. ; Masel R. I. ; Waszczuk P. ; Wieckowski A. ; Barnard T. J. Power Sources 2002, 111, 83. doi: 10.1016/S0378-7753(02)00271-9
[7]
23 Zhang J. ; Mo Y. ; Vukmirovic M. B. ; Klie R. ; Sasaki K. ; Adzic R. R. J. Phys. Chem. B 2004, 108, 10955. doi: 10.1021/jp0379953
[8]
17 Dai Y. ; Mu X. ; Tan Y. ; Lin K. ; Yang Z. ; Zheng N. ; Fu G. J. Am. Chem. Soc 2012, 134, 7073. doi: 10.1021/ja3006429
[9]
18 Huang X. ; Tang S. ; Zhang H. ; Zhou Z. ; Zheng N. J. Am. Chem. Soc 2009, 131, 13916. doi: 10.1021/ja9059409
[10]
8 Babu P. K. ; Kim H. S. ; Chung J. H. ; Oldfield E. ; Wieckowski A. J. Phys. Chem. B 2004, 108, 20228. doi: 10.1021/jp0403893
[11]
11 Ha S. ; Larsen R. ; Masel R. I. J. Power Sources 2005, 144, 28. doi: 10.1016/j.jpowsour.2004.12.031
[12]
13 Lee H. ; Habas S. E. ; Somorjai G. A. ; Yang P. D. J. Am. Chem. Soc 2008, 130, 5406. doi: 10.1021/ja800656y
[13]
22 Wu J. ; Gross A. ; Yang H. Nano Lett 2011, 11, 798. doi: 10.1021/nl104094p
[14]
25 Mazumder V. ; Lee Y. ; Sun S. Adv. Funct. Mater 2010, 20, 1224. doi: 10.1002/adfm.v20:8
[15]
26 Baldauf M. ; Kolb D. M. J. Phys. Chem 1996, 100, 11375. doi: 10.1021/jp952859m
[16]
5 Chen M. ; Wang Z. B. ; Zhou K. ; Chu Y. Y. Fuel Cells 2010, 10, 1171. doi: 10.1002/fuce.v10.6
[17]
7 Yang J. ; Tian C. ; Wang L. ; Fu H. J. Mater. Chem 2011, 21, 3384. doi: 10.1039/c0jm03361h
[18]
15 Hoshi N. ; Kida K. ; Nakamura M. ; Nakada M. ; Osada K. J. Phys. Chem. B 2006, 110, 12480. doi: 10.1021/jp0608372
[19]
16 Shao M. ; Odell J. ; Humbert M. ; Yu T. ; Xia Y. J. Phys. Chem. C 2013, 117, 4172. doi: 10.1021/jp312859x
[20]
1 Niu Z. ; Peng Q. ; Gong M. ; Rong H. ; Li Y. Angew. Chem 2011, 123, 6439. doi: 10.1002/ange.201100512
[21]
2 Mazumder V. ; Chi M. ; Mankin M. N. ; Liu Y. ; Metin O. ; Sun D. ; More K. L. ; Sun S. Nano Lett 2012, 12, 1102. doi: 10.1021/nl2045588
[22]
3 Wang R. ; Liao S. ; Ji S. J. Power Sources 2008, 180, 205. doi: 10.1016/j.jpowsour.2008.02.027
[23]
19 Huang X. ; Tang S. ; Mu X. ; Dai Y. ; Chen G. ; Zhou Z. ; Ruan F. ; Yang Z. ; Zheng N. Nat. Nanotech 2011, 6, 28. doi: 10.1038/nnano.2010.235
[24]
20 Xia X. ; Choi S. I. ; Herron J. A. ; Lu N. ; Scaranto J. ; Peng H. C. ; Wang J. ; Mavrikakis M. ; Kim M. J. ; Xia Y. J. Am. Chem. Soc 2013, 135, 15706. doi: 10.1021/ja408018j
[25]
21 Jin M. ; Zhang H. ; Xie Z. ; Xia Y. Energy Environ. Sci 2012, 5, 6352. doi: 10.1039/C2EE02866B
[26]
24 Xia Y. ; Xiong Y. ; Lim B. ; Skrabalak S. E. Angew. Chem. Int. Edit 2009, 48, 60. doi: 10.1002/anie.200802248