全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mass Spectrometry of Bis-Quinolizidine Alkaloids: FAB-MS of Oxo-Substituted Sparteines

DOI: 10.1155/2011/652589

Full-Text   Cite this paper   Add to My Lib

Abstract:

The unpublished in the literature FAB mass spectral fragmentation of seven oxosparteines (i.e., 2-oxosparteine, 15-oxosparteine, 17-oxosparteine, 2,17-dioxosparteine, 2,13-dioxosparteine, 2-oxo-13-hydroxysparteine, and 2-oxo-17-hydroxysparteine) is investigated. Fragmentation pathways, elucidation of which was assisted by FAB/collision-induced dissociation (CID) mass spectra measurements, are discussed. The data obtained create the basis for distinguishing positional isomers. 1. Introduction Bis-quinolizidine alkaloids produced by Lupine species have generated much interest because of their valuable pharmacological properties. Both pharmacological and toxicological properties of these alkaloids are well known [1, 2]. Sparteine appears to offer protection to plants from Leguminosae family against insects and grazing mammals [3, 4]. Several bis-quinolizidine alkaloids (sparteine, lupanine, 17-oxosparteine, 13-hydroxylupanine, angustifoline, etc.) show antihypertensive, antipyretic, anti-inflammatory, antiarrhythmic, diuretic, hypoglicemic, hypotensive, antidiabetic, respiratory depressant and stimulant, and uterotonic properties [5, 6]. The mass spectrometry study of bis-quinolizidine alkaloids has been stimulated by the evidence of the method’s ability to distinguish their stereoisomers, metamers, and positional isomers [7–14]. The main characteristic of the so-called “hard” electron-impact induced ionization (EI) of mass fragmentation of bis-quinolizidine alkaloid molecular ions is the dependence of the fragmentation pathway of the bis-quinolizidine skeleton on the stereochemistry of the A/B and C/D ring junctions. The stereochemical effects that are encountered with dissociations of stereoisomers incorporating saturated heterocycles rings are due to the ability of chemical bonds to be broken or formed. Mass spectrometry includes a broad range of techniques that have allowed us to prove the detailed structures of organic compounds in a variety of ways. Fast atom bombardment ionization (FAB) is classified as a soft ionization technique in mass spectrometry and is well suited to organic compounds which contain a basic functional group. Those compounds tend to run well in positive ion mode. In the positive FAB technique a high velocity, rare gas atom molecular beam was produced in the ionization source, and directed onto the sample which was in solution (in the matrix) on a target, thus causing desorption of protonated molecular ions from the sample. Generally, positive FAB produces protonated molecular ions M+H?+ with a little fragmentation, and so the

References

[1]  J. P. Michel, The Alkaloid Chemistry and Pharmacology, Academic Press, New York, NY, USA, 2001.
[2]  M. F. Roberts and M. Wink, Alkaloids—Biochemistry, Ecological Functions and Medicinal Applications, Plenum Press, New York, NY, USA, 1998.
[3]  M. Wink, “The role of quinolizidine alkaloids in plant insect interactions,” in Insect-Plant Interaction, E. A. Bernays, Ed., p. 136, CRC-Press, Boca Raton, Fla, USA, 1992.
[4]  M. Wink, “Allelochemical properties and the raison d'être of alkaloids,” in The Alkaloids: Chemistry and Biology, G. A. Cordell, Ed., Academic Press, San Diego, Calif, USA, 1993.
[5]  H. Schmitt, Element de Pharmacologie, Flammarion, Paris, France, 1970.
[6]  A. D. Kinghorn and M. F. Balandrin, “Quinolizi- dine alkaloids of the Leguminosae: structural,” in Alkaloids: Chemical and Biological Perspectives, S. W. Pelletier, Ed., Wiley Interscience, New-York, NY, USA, 1984.
[7]  S. P. Sastry, “Alkaloids,” in Biochemical Applications of Mass Spectrometry, G. R. Waller, Ed., p. 655, Wiley-Interscience, New York, NY, USA, 1972.
[8]  J. Tamas, “Stereochemical effects in the mass spectra of quinolozidine and indole alkaloids,” in Applications of Mass Spectrometry to Organic Stereochemistry, J. S. Splitter and F. Turecek, Eds., pp. 625–626, VCH, New York, NY, USA, 1994.
[9]  U. Majchrzak-Kuczyńska, M. Wiewiórowski, and E. Wyrzykiewicz, “Mass spectrometry of bis-quinolizidine alkaloids: lactams of sparteine and α-isosparteine,” Organic Mass Spectrometry, vol. 19, pp. 600–604, 1984.
[10]  E. Wyrzykiewicz, W. Wysocka, and M. Wiewiórowski, “Mass spectrometry of bis-quinolizidine alkaloids: 13-keto and hydroxy substituted derivatives of sparteine and lupanine,” Organic Mass Spectrometry, vol. 23, pp. 700–704, 1988.
[11]  E. Wyrzykiewicz, W. Boczoń, and B. Kozio?, “Mass spectrometry of bisquinolizidine alkaloids: 2- and 15-substituted derivatives of sparteine and 2- (or 14)-dehydrosparteine,” Journal of Mass Spectrometry, vol. 33, no. 10, pp. 971–975, 1998.
[12]  E. Wyrzykiewicz, W. Boczoń, and B. Kozio?, “Mass spectrometry of bis-quinolizidine alkaloids: 2- and 17-alkyl-substituted derivatives of sparteine and lupanine,” Journal of Mass Spectrometry, vol. 35, no. 11, pp. 1271–1277, 2000.
[13]  B. Jasiewicz, W. Boczoń, and E. Wyrzykiewicz, “Mass spectrometry of bisquinolizidine alkaloids: 2-and 17-cyano-substituted derivatives of sparteine and lupanine,” Journal of Mass Spectrometry, vol. 39, no. 5, pp. 541–547, 2004.
[14]  B. Jasiewicz and E. Wyrzykiewicz, “Mass spectrometry of metal complexes of bis-quinolizidine alkaloids: electron ionization and fast atom bombardment mass spectral study of copper(II) (-)-sparteine and (-)-α-isosparteine complexes,” European Journal of Mass Spectrometry, vol. 15, no. 4, pp. 487–495, 2009.
[15]  B. Jasiewicz and E. Wyrzykiewicz, “Mass spectrometry of bis-quinolizidine alkaloids: differentiation of stereoisomers and metamers using ESI and FAB mass spectrometry,” Spectroscopy Letters, vol. 42, no. 1, pp. 49–57, 2009.
[16]  T. Bartok, K. Felf?ldi, G. Sz?ll?si, M. Bartok, Z. Dega-Szafran, and J. Thiel, “Mass spectra of iso-cinchona- and halogenated cinchona alkaloids,” European Journal of Mass Spectrometry, vol. 6, no. 4, pp. 347–355, 2000.
[17]  Y. Xiang, Z. Abliz, L. J. Li, X. S. Huang, and S. S. Yu, “Study of structural characteristic features of phenanthriondolizidine alkaloids by fast atom bombardment with tandem mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 16, no. 17, pp. 1668–1674, 2002.
[18]  W. Wysocka and A. K. Przyby?, “Alkaloids from Lupinus albus L and Lupinus angustifolius L: an efficient method of extraction,” The Science of Legumes, vol. 1, pp. 37–50, 1994.
[19]  W. M. Go??biewski and I. D. Spenser, “Lactams of sparteine,” Canadian Journal of Chemistry, vol. 63, pp. 716–719, 1985.
[20]  W. Wysocka, R. Kolano?, T. Borowiak, and G. Dutkiewicz, “III. Thioanalogs of sparteine lactams. (+)-17-Thionosparteine and its perchlorate salt,” Zeitschrift für Naturforschung B, vol. 57, no. 5, pp. 563–570, 2002.
[21]  O. E. Edwards, F. H. Clarke, and B. Douglas, “17-hydroxylupanine and 17-oxylupanine,” Canadian Journal of Chemistry, vol. 32, pp. 235–241, 1954.
[22]  M. Gawron, T. Borowiak, D. Py?alska, and W. Wysocka, “Crystal and molecular structure of 13-oxolupanine,” Journal of Crystallographic and Spectroscopic Research, vol. 13, no. 2, pp. 165–172, 1983.
[23]  T. Borowiak, I. Wolska, W. Wysocka, and T. Brukwicki, “On the structure and spectroscopic properties of two 13-hydroxylupanine epimers,” Journal of Molecular Structure, vol. 753, no. 1–3, pp. 27–34, 2005.
[24]  J. Thiel, W. Boczoń, and W. Wysocka, “A stereostructural study of 17-hydroxylupanine and its perchlorate,” Monatshefte für Chemie, vol. 131, no. 10, pp. 1073–1081, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133