Two simple, fast, and accurate spectrophotometric methods for the determination of alendronate sodium are described. The methods are based on charge-transfer complex formation of the drug with two π-electron acceptors 7,7,7,8-tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in acetonitrile and methanol medium. The methods are followed spectrophotometrically by measuring the maximum absorbance at 840?nm and 465?nm, respectively. Under the optimized experimental conditions, the calibration curves showed a linear relationship over the concentration ranges of 2–10?μg?mL?1 and 2–12?μg?mL?1, respectively. The optimal reactions conditions values such as the reagent concentration, heating time, and stability of reaction product were determined. No significant difference was obtained between the results of newly proposed methods and the B.P. Titrimetric procedures. The charge transfer approach using TCNQ and DDQ procedures described in this paper is simple, fast, accurate, precise, and extraction-free. 1. Introduction Alendronate sodium is sodium trihydrogen (4-amino-1-hydroxybutylidene) biphosphonate trihydrate. It belongs to the bisphosphonate group and is used for the treatment of Paget’s disease of bone and osteoporosis, it diminishes bone resporption and thus reduces bone turnover [1, 2]. A survey of literature revealed that there are very few methods available for the determination of alendronate sodium. These methods include spectrophotometric [3–6], chromatographic [7–13], capillary electrophoresis [14], inductively coupled plasma [15], and voltammetric [16]. These previously reported spectrophotometric methods in the literature suffer from disadvantages like extraction, long time for the reaction to complete, narrow range of determination, and lack of sensitivity. Spectrophotometric techniques continue to be the most preferred methods for routine analytical work due to their simplicity and reasonable sensitivity with significant economical advantages. On the other hand, it is well known that p-benzoquinones such as 7,7,7,8-tetracyanoquinodimethane (TCNQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) as π-electron acceptors often form highly colored electron-donor-acceptor (EDA) or charge transfer (CT) complexes with various donors which provides the possibility of determination of drugs by spectrophotometric methods [17, 18]. In order to develop new simple, fast, and extraction-free spectrophotometric methods for the determination of alendronate sodium in pure and pharmaceutical dosage forms, we investigated
References
[1]
C. S. Seam, The Complete Drug Reference, Pharmaceutical Press, London, Uk, 2002.
[2]
K. J. Edwin, Goodman and Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill, New York, NY, USA, 10th edition, 2001.
[3]
Y. K. Zhang, S. Y. Fan, L. E. He, J. L. Ma, and C. Y. Qi, “Determination of sodium alendronate tablets by spectrophotometry,” Fenxi Huaxue, vol. 28, no. 9, p. 1181, 2001.
[4]
S. N. Meyya Nathan, G. V. S. Rama Sharma, V. Bhanuprakash Reddy, and B. Suresh, “Quantitative determination of alendronate sodium in pharmaceutical dosage forms and in bulk drug by spectrophotometry,” Indian Drugs, vol. 38, no. 9, pp. 462–463, 2001.
[5]
J. Kuljanin, I. Jankovic, J. Nedeljkovic, D. Prstojevic, and V. Marinkovic, “Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions,” Journal of Pharmaceutical and Biomedical Analysis, vol. 28, no. 6, pp. 1215–1220, 2002.
[6]
E. A. Taha and N. F. Youssef, “Spectrophotometric determination of some drugs for osteoporosis,” Chemical and Pharmaceutical Bulletin, vol. 51, no. 12, pp. 1444–1447, 2003.
[7]
E. Kwong, A. M. Y. Chiu, S. A. McClintock, and M. L. Cotton, “HPLC analysis of an amino bisphosphonate in pharmaceutical formulations using postcolumn derivatization and fluorescence detection,” Journal of Chromatographic Science, vol. 28, no. 11, pp. 563–566, 1990.
[8]
E. W. Tsai, S. D. Chamberlin, R. J. Forsyth, C. Bell, D. P. Ip, and M. A. Brooks, “Determination of bisphosphonate drugs in pharmaceutical dosage formulations by ion chromatogrraphy with indirect UV detection,” Journal of Pharmaceutical and Biomedical Analysis, vol. 12, no. 8, pp. 983–991, 1994.
[9]
Y. H. R. Han and X. Z. Qin, “Determination of alendronate sodium by ion chromatography with refractive index detection,” Journal of Chromatography A, vol. 719, no. 2, pp. 345–352, 1996.
[10]
J. D. De Marco, S. E. Biffar, D. G. Reed, and M. A. Brooks, “The determination of 4-amino-1-hydroxybutane-1,1-diphosphonic acid monosodium salt trihydrate in pharmaceutical dosage forms by high-performance liquid chromatography,” Journal of Pharmaceutical and Biomedical Analysis, vol. 7, no. 12, pp. 1719–1727, 1989.
[11]
P. Ptacek, J. Klima, and J. Macek, “Determination of alendronate in human urine as 9-fluorenylmethyl derivative by high-performance liquid chromatography,” Journal of Chromatography B, vol. 767, no. 1, pp. 111–116, 2002.
[12]
W. F. Kline and B. K. Matuszewski, “Improved determination of the bisphosphonate alendronate in human plasma and urine by automated precolumn derivatization and high-performance liquid chromatography with fluorescence and electrochemical detection,” Journal of Chromatography—Biomedical Applications, vol. 583, no. 2, pp. 183–193, 1992.
[13]
European Pharmacopoeia, Council of Europe, Strasbourg, France, 3rd edition, 2001.
[14]
E. W. Tsai, M. M. Singh, H. H. Lu, D. P. Ip, and M. A. Brooks, “Application of capillary electrophoresis to pharmaceutical analysis: determination of alendronate in dosage forms,” Journal of Chromatography, vol. 626, no. 2, pp. 245–250, 1992.
[15]
D. G. Reed, G. P. Martin, J. M. Konieczny, and M. A. Brooks, “The determination of alendronate sodium in tablets by inductively coupled plasma (ICP),” Journal of Pharmaceutical and Biomedical Analysis, vol. 13, no. 8, pp. 1055–1058, 1995.
[16]
O. A. Razak, S. F. Belal, M. M. Bedair, and R. S. Haggag, “The utilization of copper(II) phosphate for the anodic stripping voltammetric assay of alendronate sodium, desferrioxamine mesylate and lisinopril,” Talanta, vol. 59, no. 5, pp. 1061–1069, 2003.
[17]
A. Raza, “Utility of certain -Acceptors for the spectrophotometric determination of tranexamic acid in commercial dosage forms,” Analytical Letters, vol. 39, no. 10, pp. 2217–2226, 2006.
[18]
N. Rahman, N. A. Khan, and S. N. H. Azmi, “Validated spectrophotometric methods for the determination of amiodarone hydrochloride in commercial dosage forms using p-chloranilic acid and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone,” Analytical Sciences, vol. 20, no. 8, pp. 1231–1235, 2004.
[19]
S. M. Al-Ghannam, “New spectrophotometric methods for microdetermination of fluoxacillin and cloxacillin in pure and dosage forms,” Mikrochimica Acta, vol. 138, no. 1-2, pp. 29–32, 2002.
[20]
Y. M. Issa, F. M. Abou-Attia, F. M. Abdel-Gawad, and S. M. Abdel-Hamid, “Utility of some Pi-Acceptors for the spectrophotometric determination of trimetazidine hydrochloride,” Analytical Letters, vol. 35, no. 3, pp. 451–461, 2002.
[21]
S. Gorog, Ultraviolet-Visible Spectrophotometry in Pharmaceutical Analysis, CRC Press, Boca Raton, Fla, USA, 1995.
[22]
R. Foster, Organic Charge-Transfer Complexes, Academic Press, London, New York, USA, 1969.
[23]
British Pharmacopoeia, HM Stationery Office, London, UK, 2005.
[24]
G. D. Christian, Analytical Chemistry, John Wiley & Sons, Singapore, 4th edition, 1994.