全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

三峡库区消落带不同淹水期土壤可溶性碳氮的研究
Soil Dissolved Organic Carbon and Nitrogen in the Water-Level-Fluctuating Zone with Different Flooding Durations in the Three Gorges Reservoir Region

DOI: 10.13718/j.cnki.xdzk.2018.01.015

Keywords: 三峡库区, 消落带, 不同淹水期, 土壤可溶性碳, 土壤可溶性氮
Three Gorges Reservoir region
, water-level-fluctuating zone, different flooding durations, soil dissolved organic carbon, soil dissolved organic nitrogen

Full-Text   Cite this paper   Add to My Lib

Abstract:

以位于涪陵区珍溪镇王家沟的三峡库区消落带不同淹水期土壤为研究对象,设置180 m高程为永不淹水对照点,175 m(短期淹水,90 d),165 m(中期淹水,175 d)和155 m(长期淹水,260 d)高程消落区内不同淹水期取样点,研究消落带不同淹水期土壤可溶性有机碳(DOC)和可溶性有机氮(DON)的变化特征.结果表明,对照点土壤有机碳(SOC)及全氮(TN)均无明显的季节变化,而短期淹水则表现为春夏季显著高于秋冬季(p<0.05);对照点和短期淹水的DOC及DON季节变化明显,DOC表现为春夏季显著高于秋冬季(p<0.05),而DON则表现为冬夏季高于春秋季(p<0.05).在相同时间段内(2011年5月22日至2011年9月3日),与对照点相比,中短期淹水的SOC质量分数显著增加(p<0.05),而长期淹水处的SOC,TN,DOC及DON均显著降低(p<0.05),表明消落带高程越低,淹水时间越长,越容易造成土壤碳氮及可溶性碳氮的损失.消落带3个淹水期的DOC分配比及SOC/TN与对照点相比差异不明显,中长期淹水的DON分配比显著低于对照点(p<0.05),而DOC/DON则显著高于对照点(p<0.05),表明淹水对土壤有机碳氮矿化作用和土壤有机碳的周转速率不明显,但中长期淹水抑制土壤氮周转速率和可溶性氮的矿化作用.相关分析表明,土壤可溶性碳氮主要受SOC、TN、土壤湿度、地下5 cm温度以及pH的影响和调控.
Sampling points were set in a typical drawdown area located in Wangjiagou of Fuling in the Three Gorges Reservoir region of Chongqing at an elevation of 180 m (control, never flooded), 175 m (short-term flooding, 90 days), 165 m (medium-term flooding, 175 days) or 155 m (long-term flooding, 260 days) to study the effect of different flooding durations on soil dissolved organic carbon (DOC) and soil dissolved organic nitrogen (DON). Soil organic carbon (SOC) and total nitrogen (TN) showed no obvious seasonal variations at the sampling point of 180 m (control). However, they were significantly higher in spring and summer than in autumn and winter at the sampling point of 175 m (short-term flooding, p < 0.05). As for DOC and DON, there were remarkable seasonal variations in the control and the short-term flooding treatment, the DOC in spring and summer being significantly higher than in autumn and winter (p < 0.05), while DON in winter and summer was higher than in spring and autumn (p < 0.05). In the same observing period (May 22nd 2010 to Sept. 3rd 2011), compared with that of the control, SOC significantly increased with medium-and short-term flooding (p < 0.05), but SOC, TN, DOC and DON significantly decreased with long-term flooding (p < 0.05), indicating that lower elevation and longer flooding time were likely to result in the loss of soil dissolved organic carbon and nitrogen in the drawdown area. Compared with the control, there were no obvious differences in DOC/SOC ratio and SOC/TN ratio in the three different flooding durations in the fluctuating zone, but the DON/TN ratios of medium and long-term flooding were significantly lower and the DOC/DON ratios were higher than the control

References

[1]  肖烨, 黄志刚, 武海涛, 等. 三江平原不同湿地类型土壤活性有机碳组分及含量差异[J]. 生态学报, 2015, 35(23): 7625-7633.
[2]  吴健敏, 郗敏, 孔范龙, 等. 土壤溶解性有机碳(DOC)动态变化影响因素研究进展[J]. 地质评论, 2013, 59(5): 953-961.
[3]  毛文韬, 李堂中, 辜夕容, 等. 三峡库区消落带不同高程柳树林地养分特征[J]. 西南大学学报(自然科学版), 2016, 38(3): 119-125.
[4]  贾国梅, 牛俊涛, 席颖. 三峡库区消落带湿地土壤有机碳及其组分特征[J]. 土壤, 2015, 47(5): 926-931.
[5]  陈涵贞, 苏德森, 吕新, 等. 武夷山常绿阔叶林土壤有机碳和微生物量碳的动态特征[J]. 农学学报, 2011, 1(10): 38-42. DOI:10.3969/j.issn.1007-7774.2011.10.008
[6]  潘新丽, 林波, 刘庆. 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响[J]. 应用生态学报, 2008, 19(8): 1637-1643.
[7]  范小华, 谢德体, 魏朝富. 水、土环境变化下消落区生态环境问题研究[J]. 农业资源与环境科学, 2006, 22(10): 374-379.
[8]  王晶, 张旭东, 解宏图, 等. 现代土壤有机质研究中新的量化指标概述[J]. 应用生态学报, 2003, 14(10): 1809-1812. DOI:10.3321/j.issn:1001-9332.2003.10.049
[9]  DECAU M L, SIMON J C, JACQUET A. Nitrate Leaching Under Grassland as Affected by Mineral Nitrogen Fertilizer and Cattle Urine[J]. Journal of Environmental Quality, 2004, 33(2): 637-644. DOI:10.2134/jeq2004.6370
[10]  郭劲松, 黄轩民, 张彬, 等. 三峡库区消落带土壤有机质和全氮含量分布特征[J]. 湖泊科学, 2012, 24(2): 213-219. DOI:10.18307/2012.0207
[11]  韩建刚, 曹雪. 典型滨海湿地干湿交替过程氮素动态的模拟研究[J]. 环境科学, 2013, 34(6): 2383-2389.
[12]  顾克军, 张传辉, 顾东祥, 等. 短期不同秸秆还田与耕作方式对土壤养分与稻麦周年产量的影响[J]. 西南农业学报, 2017, 30(1): 1408-1414.
[13]  苏冬雪, 王文杰, 邱岭, 等. 落叶松林土壤可溶性碳、氮和官能团特征的时空变化及与土壤理化性质的关系[J]. 生态学报, 2012, 32(21): 6705-6714.
[14]  CROOKE W M, SIMPSON W E. Determination of Ammonium in Kjeldahl Digests of Crops by an Automated Procedure[J]. Journal of the Science of Food and Agriculture, 1971, 22(1): 9-10. DOI:10.1002/(ISSN)1097-0010
[15]  汪景宽, 李丛, 于树, 等. 不同肥力棕壤溶解性有机碳、氮生物降解特性[J]. 生态学报, 2008, 28(12): 6165-6171. DOI:10.3321/j.issn:1000-0933.2008.12.046
[16]  MAGILL A H, ABER J D. Dissolved Organic Carbon and Nitrogen Relationships in Forest Litter as Affected by Nitrogen Deposition[J]. Soil Biology and Biochemistry, 2000, 32(5): 603-613. DOI:10.1016/S0038-0717(99)00187-X
[17]  吴艳, 江长胜, 郝庆菊. 西南地区紫色水稻土活性碳库的季节动态[J]. 环境科学, 2012, 33(8): 2804-2809.
[18]  杨青青, 陈小花, 余雪标, 等. 滨海台地典型森林类型土壤可溶性有机碳季节变化[J]. 热带作物学报, 2016, 37(1): 30-35.
[19]  齐玉春, 彭琴, 董云社, 等. 温带典型草原土壤总有机碳及溶解性有机碳对模拟氮沉降的响应[J]. 环境科学, 2014, 35(8): 3073-3082.
[20]  高洁, 江韬, 李璐璐, 等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学, 2015, 36(1): 151-162.
[21]  王嫒华, 苏以荣, 李杨, 等. 水田和旱地土壤有机碳周转对水分的响应[J]. 中国农业科学, 2012, 45(2): 266-274.
[22]  SRIVASTAVA S C. Microbial C N and P in Dry Tropical Soils: Seasonal Changes and Influence of Soil Moisture[J]. Soil Biology and Biochemistry, 1992, 24(7): 711-714. DOI:10.1016/0038-0717(92)90050-8
[23]  沈玉芳, 陶武辉, 李世清. 有机物料输入对干润砂质新成土可溶性有机碳、氮的影响[J]. 农业环境科学学报, 2011, 30(1): 139-145.
[24]  柴雪思, 雷利国, 江长胜, 等. 三峡库区典型消落带土壤微生物生物量碳、氮的变化特征及其影响因素探讨[J]. 环境科学, 2016, 37(8): 2979-2988.
[25]  李飞, 张文丽, 刘菊, 等. 三峡水库泄水期消落带土壤微生物活性[J]. 生态学杂志, 2013, 32(4): 968-974.
[26]  李成芳, 曹凑贵, 汪金平, 等. 稻鸭、稻鱼共作生态系统土壤可溶性有机N的动态和损失[J]. 生态学报, 2009, 29(5): 2541-2550.
[27]  王业春, 雷波, 张晟. 三峡库区消落带不同水位高程植被和土壤特征差异[J]. 湖泊科学, 2012, 24(2): 206-212. DOI:10.18307/2012.0206
[28]  王晓荣, 程瑞梅, 肖文发, 等. 三峡库区消落带初期土壤养分特征[J]. 生态学杂志, 2010, 29(2): 281-289.
[29]  常超, 谢宗强, 熊高明, 等. 三峡水库蓄水对消落带土壤理化性质的影响[J]. 自然资源学报, 2011, 26(7): 1236-1244. DOI:10.11849/zrzyxb.2011.07.016
[30]  黄靖宇, 宋长春, 宋艳宇, 等. 湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J]. 环境科学, 2008, 29(5): 1380-1387.
[31]  宋海星, 李生秀. 根系的吸收作用及土壤水分对硝态氮、铵态氮分布的影响[J]. 中国农业科学, 2005, 38(1): 96-101.
[32]  鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[33]  侯翠翠, 宋长春, 李英臣, 等. 不同水分条件下小叶章湿地表土有机碳及活性有机碳组分季节动态[J]. 环境科学, 2011, 32(1): 290-297.
[34]  赖建东, 田昆, 郭雪莲, 等. 纳帕海湿地土壤有机碳和微生物量碳研究[J]. 湿地科学, 2014, 12(1): 49-54.
[35]  马维伟, 王辉, 李广, 等. 甘南尕海湿地不同植被退化阶段土壤有机碳含量及动态[J]. 水土保持学报, 2015, 29(5): 254-259.
[36]  白军红, 邓伟, 朱颜明, 等. 霍林河流域湿地土壤碳氮空间分布特征及生态效应[J]. 应用生态学报, 2003, 14(9): 1494-1498.
[37]  RüCKAUF U, AUGUSTIN J, RUSSOW R, et al. Nitrate Removal from Drained and Reflooded Fen Soils Affected by Soil N Transformation Processes and Plant Uptake[J]. Soil Biology and Biochemistry, 2004, 36(1): 77-90. DOI:10.1016/j.soilbio.2003.08.021
[38]  PRESCOTT C E, CHAPPELL H N, VESTERDAL L. Nitrogen Turnover in Forest Floors of Coastal Douglas-Fir at Sites Differing in Soil Nitrogen Capital[J]. Ecology, 2000, 81(7): 1878-1886. DOI:10.1890/0012-9658(2000)081[1878:NTIFFO]2.0.CO;2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133