全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

结合Backfilling和空闲资源调度的云工作流调度方法
A Cloud Workflow Scheduling Scheme Based on Combining Backfilling and Idle Resource Scheduling

DOI: 10.13718/j.cnki.xdzk.2018.06.022

Keywords: 云计算, 工作流调度, Backfilling策略, 空闲资源调度, 任务执行延迟
cloud computing
, workflow scheduling, backfilling mechanism, idle resource scheduling, task execution delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对云计算中工作流的科学调度问题,提出了一种快速且有效的调度方案.首先,根据计算速度将所有的资源节点以降序方式排列;然后,调度程序通过深度优先搜索,检查任务之间的依赖关系,并根据截止期限对待执行任务进行加权排序;接着,计算每个待执行任务所使用的资源的时隙.如果当前可用资源不能满足当前任务,则采用Backfilling策略,对该任务所需资源进行预留,并跳到下一个任务执行.如果当前资源满足当前任务,则执行提出的空闲资源调度(IRS)策略,尽量安排空闲资源来执行该任务.仿真结果表明:与当前云工作流调度技术相比,本文调度策略具有更低的任务完成时间与任务执行延迟,以及更高的资源利用率.
A fast and effective scheduling scheme is proposed in this paper for solving workflow scheduling problems in cloud computing. First, all resource nodes are arranged in a descending order according to the calculation speed. Then, the scheduler evaluates the dependencies between the tasks by depth-first search (DFS) and weights the tasks according to the deadline. After that, the time slot of each resource to be used for the task is calculated. If the currently available resource does not meet the current task, the backfilling policy is used to reserve the resources required for the task and skip to the next task. If the current resource satisfies the current task, the proposed idle resource scheduling (IRS)policy is performed to schedule the idle resource to perform the task. Simulation results show that the proposed scheduling strategy has excellent performance in terms of task completion time, task execution delay and resource utilization

References

[1]  AGMON BEN-YEHUDA O, BEN-YEHUDA M, SCHUSTER A, et al. Deconstructing Amazon EC2 Spot Instance Pricing[J]. ACM Transactions on Economics and Computation, 2013, 1(3): 1-20.
[2]  WU Z, NI Z, GU L, et al. A Revised Discrete Particle Swarm Optimization for Cloud Workflow Scheduling[C]//Computational Intelligence and Security (CIS), 2010 International Conference on. Nanning, China: IEEE, 2010: 184-188.
[3]  张伟, 刘三阳. 动态局部搜索差分进化算法[J]. 西南大学学报(自然科学版), 2015, 37(3): 93-98.
[4]  BESSAI K, YOUCEF S, OULAMARA A, et al. Bi-Criteria Workflow Tasks Allocation and Scheduling in Cloud Computing Environments[C]//Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on. Honolulu, USA: IEEE, 2012: 638-645.
[5]  张亮, 张曦煌. 一种面向云计算虚拟机资源拓扑结构的任务调度[J]. 计算机应用研究, 2015, 32(12): 3738-3741. DOI:10.3969/j.issn.1001-3695.2015.12.049
[6]  王波. 基于遗传算法的集群虚拟机资源调度研究[J]. 西南师范大学学报(自然科学版), 2016, 41(3): 107-111.
[7]  HE T, CHEN S, KIM H, et al. Scheduling Parallel Tasks onto Opportunistically Available Cloud Resources[C]//Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on. Honolulu, USA: IEEE, 2012: 180-187.
[8]  SURESH A, VIJAYAKARTHICK P. Improving Scheduling of Backfill Algorithms Using Balanced Spiral Method for Cloud Metascheduler[C]//Recent Trends in Information Technology (ICRTIT), 2011 International Conference on. Chennai, Tamil Nadu, India: IEEE, 2011: 624-627.
[9]  孙景昊, 邓庆绪, 孟亚坤. GPU上两阶段负载调度问题的建模与近似算法[J]. 软件学报, 2014, 25(2): 298-313.
[10]  周凯. 高性能计算中作业调度技术与集群管理系统的研究[D]. 镇江: 江苏科技大学, 2015.
[11]  邓见光, 赵跃龙, 袁华强. 一种多QoS目标约束的云计算任务调度策略[J]. 计算机应用研究, 2016, 33(8): 2479-2482.
[12]  BOBELIN L, MARTINEAU P, ZHAO D, et al. Shortest Processing Time First Algorithm for Hadoop[C]//Cyber Security and Cloud Computing (CSCloud), 2016 IEEE 3rd International Conference on. Beijing, China: IEEE, 2016: 119-123.
[13]  贾冬青, 高永芹, 陈玉芳. 基于云存储的内容分发技术研究[J]. 西南师范大学学报(自然科学版), 2016, 41(6): 111-118.
[14]  王准, 苏顺开. 多租户云计算中基于ILP模型的虚拟机放置策略[J]. 湘潭大学(自然科学学报), 2016, 38(4): 71-75.
[15]  Sullivan D, Newman A. Extraction and Backfill Scheduling in a Complex Underground Mine[J]. Interfaces, 2014, 44(2): 204-221. DOI:10.1287/inte.2013.0730

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133