全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类次线性分数阶Schr?dinger方程的无穷多解
Infinitely Many Solutions for a Class of Sublinear Fractional Schr?dinger Equations

DOI: 10.13718/j.cnki.xdzk.2018.06.012

Keywords: 分数阶Schr?dinger方程, 变分法, 无穷多解, 对称山路引理
fractional Schr?dinger equation
, variational method, infinitely many solutions, symmetric mountain pass theorem

Full-Text   Cite this paper   Add to My Lib

Abstract:

$研究了如下的分数阶Schr?dinger方程:$ {{\left( -\Delta \right)}^{s}}u+V\left( x \right)u=f\left( x,u \right)\ \ \ \ \ x\in {{\mathbb{R}}^{N}} $ 其中N≥3,V是变号位势,f是次线性的.运用对称山路引理,得到了该方程无穷多解的存在性.$
$The following fractional Schr?dinger equation is studied $ {{\left( -\Delta \right)}^{s}}u+V\left( x \right)u=f\left( x,u \right)\ \ \ \ \ x\in {{\mathbb{R}}^{N}} $ where N≥3, V is an indefinite potential and f satisfies sublinear growth. The existence of infinitely many solutions is obtained by using the variant symmetric mountain lemma.

References

[1]  LI L, ZHONG X. Infinitely Many Small Solutions for the Kirchhoff Equation with Local Sublinear Nonlinearities[J]. J Math Anal Appl, 2016, 435(1): 955-967. DOI:10.1016/j.jmaa.2015.10.075
[2]  KHOUTIR S, CHEN H B. Existence of Infinitely Many High Energy Solutions for a Fractional Schr?dinger Equation in ${{\mathbb{R}}^{N}}$ [J]. Appl Math Lett, 2016, 61(2): 156-162.
[3]  BIN G. Multiple Solutions of Nonlinear Schr?dinger Equation with the Fractional Laplacian[J]. Nonlinear Anal, 2016, 30: 236-247. DOI:10.1016/j.nonrwa.2016.01.003
[4]  ZHANG W, TANG X H, ZHANG J. Infinitely Many Radial and Non-Radial Solutions for a Fractional Schr?dinger Equation[J]. Comput Math Appl, 2016, 71(3): 737-747. DOI:10.1016/j.camwa.2015.12.036
[5]  刘晓琪, 欧增奇. 一类Kirchhoff型分数阶p-拉普拉斯方程无穷解的存在性[J]. 西南大学学报(自然科学版), 2017, 39(4): 70-75.
[6]  NEZZA E D, PALATUCCI G, VALDINOCI E. Hitchhiker's Guide to the Fractional Sobolev Spaces[J]. Bull Sci Math, 2011, 136(5): 521-573.
[7]  TENG K M. Multiple Solutions for a Class of Fractional Schr?dinger Equations in ${{\mathbb{R}}^{N}}$ [J]. Nonlinear Anal, 2015, 21(21): 76-86.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133