|
- 2018
具基因突变的周期脉冲捕食食饵系统的动力学行为研究
|
Abstract:
研究了一个周期脉冲捕食-食饵系统.首先得到了系统的一个不变区域;其次得到了系统的平凡周期解和捕食者灭绝周期解的存在性;最后通过数值模拟探讨食饵基因突变率对系统动力学行为的影响,结果显示存在两个阈值θ1*和θ2*,使得突变率θ在不同的取值范围时,系统分别出现全部种群灭绝、捕食者种群灭绝和全部种群持续生存3种情况,也即食饵种群的基因突变率对种群的动力学行为有重要影响.
This paper deals with a periodic impulsive predator-prey system. Firstly, an invariant region for the system is obtained. Secondly, the existence of the trivial periodic solution and the predator-eradication periodic solution are obtained. Finally, the influence of mutation rate of prey on the dynamics of the system is discussed through numerical simulation. The results show that there exist two critical values, i.e. θ1* and θ2*, which results in three different situations in the system according to the different ranges of mutation rate θ, namely, all the population dies out, the predator population becomes extinct and all the population survives persistently. In other words, genetic mutation rate has a great influence on the dynamics behavior of the system
[1] | FREEDMAN H I. Deterministic Mathematical Models in Population Ecology[M]. New York: Marcel Dekker, 1980. |
[2] | 赖菊, 张国洪. 一个考虑Beddington-DeAngelis型功能反应的集团内捕食系统的灭绝与持久性[J]. 西南大学学报(自然科学版), 2017, 39(3): 95-101. |
[3] | WAXMAN D, PECK J R. Sex and Adaptation in a Changing Environment[J]. Genetics, 1999, 153(2): 1041-1053. |
[4] | MAY R M. Theoretical Ecology: Principles and Applications[J]. Journal of Applied Ecology, 1977, 14(3): 999-1001. |
[5] | KUANG Y. Delay Differential Equation with Application in Population Dynamics[M]. Boston: Academic Press, 1993. |
[6] | 黄家琳, 牟天伟. 离散时滞脉冲微分动力系统的指数稳定性判据[J]. 西南大学学报(自然科学版), 2017, 39(6): 87-91. |
[7] | 杨洪举, 张化永, 黄头生. 一类时间离散捕食者-食饵系统中的分岔研究[J]. 西南大学学报(自然科学版), 2017, 39(7): 115-123. |
[8] | EPSTEIN S S. Control of Chemical Pollutants[J]. Nature, 1970, 228(5274): 816-819. DOI:10.1038/228816a0 |
[9] | BELLO Y, WAXMAN D. Near-Periodic Substitution and the Genetic Variance Induced by Environmental Change[J]. Journal of Theoretical Biology, 2006, 239(2): 152-160. DOI:10.1016/j.jtbi.2005.08.044 |
[10] | WEINHOLD B. Environmental Factors in Birth Defects[J]. Environmental Health Perspectives, 2009, 117(10): A440-A447. DOI:10.1289/ehp.117-a440 |
[11] | JIAO J J, CHEN L S. The Genic Mutation on Dynamics of a Predator-Prey System with Impulsive Effect[J]. Nonlinear Dynamics, 2012, 70(1): 141-153. DOI:10.1007/s11071-012-0437-8 |
[12] | JURY E I. Inners and Stability of Dynamics Systems[M]. London: Wiley, 1974. |