全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利用高效液相色谱法同时测定枇杷果实中10种植物激素
Simultaneous Analysis of Ten Plant Hormones in Loquat Fruitlet by High-Performance Liquid Chromatogeaphy

DOI: 10.13718/j.cnki.xdzk.2018.03.003

Keywords: 高效液相色谱, 枇杷, 植物激素, 果实发育
HPLC
, loquat, plant hormone, fruit development

Full-Text   Cite this paper   Add to My Lib

Abstract:

以三倍体枇杷花和幼果为研究材料, 建立了一套可同时分离和测定玉米素、赤霉素、激动素、水杨酸、6-苄氨基腺嘌呤、苯甲酸、吲哚乙酸、脱落酸、吲哚丁酸和茉莉酸10种植物激素的方法.在甲醇:乙腈:磷酸缓冲液(pH值为3.0)体积比为20:20:60为流动相, 流速为1 mL/min, 柱温35 ℃, 波长为210 nm和254 nm条件下, 测定枇杷幼果中10种激素, 其线性相关系数在0.9915以上, 加标回收率在58.6%~85.2%之间; 检出限在0.004~4.92 ng之间, 精密度在0.026%~3.05%之间.此外, 利用该方法对番茄和甘蓝叶片中10种内源激素含量进行了验证, 表明该方法可用于植物中多种激素的同时测定.
In this study, a high-performance liquid chromatography method was established for simultaneously determining ten phytohormones (trans-zeatin, gibberellin A3, kinetin, salicylic acid, 6-benzylaminopurine, benzoic acid, indole-3-acetic acid, abscisic acid, indole-3-butyric acid and jasmonic acid) in triploid loquat (Eriobotrya japonica (Thunb) Lindl.) flowers and fruitlet.The above-mentioned ten phytohormones were detected under the following conditions:reversed-phase column Dikma C18 (250 mm×46 mm, 5 μm) at a temperature of 35℃, methanol/acetonitrile/phosphate buffer (pH=3.0) (20:20:60, vol/vol/vol) mixture as the mobile phase with a flow rate of 1 mL/min and a determination wavelength of 210 and 254 nanometer.The standard calibration curves of the ten phytohormones all showed a high linearity, the correlation coefficients being above 0.991 5.Their limits of detection ranged from 0.004 to 4.92 ng, with a relatively high precision (%RSD=0.026%-3.05%) and accuracy (%recovery=58.6%-85.2%).Then, this method was used to monitor the changes of phytohormone contents during the development of loquat fruitlet, and Lycopersicon esculentum and Brassica oleracea young leaves, and the results were satisfactory, suggesting that this method is an efficient tool for routine screening of phytohormone contents in various plants

References

[1]  王献革, 郝婕, 李学营, 等. HPLC法测定苹果实生苗叶片生长过程中内源激素含量变化的研究[J]. 河北农业科学, 2013, 17(5): 27-30.
[2]  马海燕. 葡萄生长过程中内源激素含量变化的研究[D]. 杨凌: 西北农林科技大学, 2007.
[3]  GISBERT A D, ROMERO C, MARTíNEZCALVO J, et al. Genetic Diversity Evaluation of a Loquat (Eriobotrya japonica (Thunb.) Lindl.) Germplasm Collection by SSRs and S-Allele Fragments[J]. Euphytica, 2009, 168(1): 121-134. DOI:10.1007/s10681-009-9901-z
[4]  PAREEK S, BENKEBLIA N, JANICK J, et al. Postharvest Physiology and Technology, of Loquat (Eriobotrya japonica Lindl.) Frui[J]. Journal of the Science of Food & Agriculture, 2014, 94(8): 1495-1504.
[5]  杨婕, 张日清, 金晓玲. 高效液相色谱法在木本植物内源激素含量检测中的应用[J]. 经济林研究, 2010, 28(1): 122-126.
[6]  杨途熙, 魏安智, 郑元, 等. 高效液相色谱法同时分离测定仁用杏花芽中8种植物激素[J]. 分析化学, 2007, 35(9): 1359-1361.
[7]  卢巧梅, 张兰, 陈天文, 等. 液相色谱-串联质谱分析盐胁迫下植物激素的含量变化[J]. 中国科学B辑:化学, 2009, 39(8): 785-792.
[8]  高佳缘. "绥李三号"李芽内源植物激素动态变化规律的研究[D]. 北京: 中国农业科学院, 2012.
[9]  TARKOWSKá D, NOVáK O, FLOKOVá K, et al. Quo Vadis Plant Hormone Analysis?[J]. Planta, 2014, 240(1): 55-76. DOI:10.1007/s00425-014-2063-9
[10]  刘雅, 张虎平, 张绍铃, 等. 梨萌芽期僵芽和正常芽的生理差异分析[J]. 南京农业大学学报, 2016, 39(3): 373-378. DOI:10.7685/jnau.201509040
[11]  MARTINEZCALVO J, BADENSE M L, LLACER G, et al. Phenological Growth Stages of Loquat Tree (Eriobotrya japonica (Thunb.) Lindl.)[J]. Annals of Applied Biology, 2008, 134(3): 353-357.
[12]  徐波, 姜琬, 李晓林, 等. "大五星"天然三倍体枇杷株系的SSR分析[J]. 西南大学学报(自然科学版), 2015, 37(3): 22-27.
[13]  ANDERSEN J A, SCHIODT T. Genetic Engineering of Parthenocarpic Fruit Development in Tomato[J]. Molecular Breeding, 1999, 5(5): 463-470. DOI:10.1023/A:1009665409959
[14]  PANDOLFINI T. Seedless Fruit Production by Hormonal Regulation of Fruit set[J]. Nutrients, 2009, 1(2): 168-177. DOI:10.3390/nu1020168
[15]  DAVISON R M. Fruit-Setting of Apples using Gibberellic Acid[J]. Nature, 1960, 188(4751): 681-682.
[16]  陈建华, 曹阳, 李昌珠, 等. 板栗内源激素的高效液相色谱测定方法[J]. 中南林业科技大学学报, 2004, 24(5): 39-41.
[17]  PAN X, WELTI R, WANG X. Quantitative Analysis of Major Plant Hormones in Crude Plant Extracts by High-Performance Liquid Chromatography-Mass Spectrometry[J]. Nature Protocols, 2010, 5(6): 986-992. DOI:10.1038/nprot.2010.37
[18]  LU Q, ZHANG L, CHEN T, et al. Identification and Quantitation of Auxins in Plants by Liquid Chromatography/Electrospray Ionization Ion Trap Mass Spectrometry[J]. Rapid Communications in Mass Spectrometry, 2008, 22(16): 2565-2572. DOI:10.1002/rcm.v22:16
[19]  雷静, 许立兴, 崔新仪, 等. 高效液相色谱法测定马铃薯中GA3含量[J]. 保鲜与加工, 2016(4): 123-127.
[20]  吴红京, 宋虎卫, 唐根源, 等. (木奈)果实中内源激素的高效液相色谱测定[J]. 福建分析测试, 2003, 12(3): 1792-1795.
[21]  NIU Q F, WANG T, LI J Z, et al. Effects of Exogenous Application of GA4+7, and N-(2-Chloro-4-Pyridyl)-n'-Phenylurea on Induced Parthenocarpy and Fruit Quality in Pyrus Pyrifolia, 'cuiguan'[J]. Plant Growth Regulation, 2015, 76(3): 251-258. DOI:10.1007/s10725-014-9995-8
[22]  GOUBRAN F H, EL-ZEFTAWI B M. Induction of Seedless Loquat[J]. Acta Horticulturae, 1986, 1(179): 381-384.
[23]  NEWBURY H J, SEDGLEY M, POSSINGHAM J V. Nucleic Acid Metabolism During Early Development of Pollinated and Auxin-induced Parthenocarpic Watermelon Fruits[J]. Journal of Experimental Botany, 1978, 29(108): 207-215.
[24]  于婷, 李建贵, 侍瑞, 等. 骏枣果实中的内源激素含量与其生理落果的关系[J]. 经济林研究, 2016, 34(2): 45-49.
[25]  LIN S, SHARPE R H, JANICK J. Loquat:Botany and Horticulture[J]. Horticultural Reviews, 1999, 23: 233-276.
[26]  李宁, 苏淑钗, 陆小辉, 等. 榛子果实生长中激素变化规律的研究[J]. 中南林业科技大学学报, 2013, 33(2): 69-72.
[27]  杨杨, 范蓓, 生吉萍, 等. 高效液相色谱法测定芒果皮中脱落酸的含量[J]. 食品工业科技, 2014, 35(2): 76-79.
[28]  曾庆钱, 陈厚彬, 鲁才浩, 等. HPLC测定荔枝不同器官中内源激素流程的优化[J]. 果树学报, 2006, 23(1): 145-148.
[29]  李晓荣, 李加纳. 芸薹属二倍体种、四倍体种及人工合成多倍体的基因表达差异[J]. 西南大学学报(自然科学版), 2015, 37(6): 27-34.
[30]  邓文红, 张俊琦. UPLC-MS/MS测定油蒿叶片中4种内源植物激素[J]. 植物学研究, 2015, 4(1): 1-7. DOI:10.11913/PSJ.2095-0837.2015.10001
[31]  陈波浪, 郑春霞, 盛建东, 等. HPLC分离和测定棉花中3种植物激素[J]. 新疆农业大学学报, 2006, 29(1): 28-30.
[32]  MESEJO C, YUSTE R, REIG C, et al. Gibberellin Reactivates and Maintains Ovary-Wall Cell Division Causing Fruit Set in Parthenocarpic Citrus, Species[J]. Plant Science, 2016, 247: 13-24. DOI:10.1016/j.plantsci.2016.02.018
[33]  WATANABE M, SEGAWA H, MURAKAMI M, et al. Effects of Plant Growth Regulators on Fruit Set and Fruit Shape of Parthenocarpic Apple Fruits[J]. Journal of the Japanese Society for Horticultural Science, 2008, 77(4): 350-357. DOI:10.2503/jjshs1.77.350
[34]  KIYOKAWA I, NAKAGAWA S. Parthenocarpic Fruit Growth and Development of the Peach as Influenced by Gibberellin Application[J]. Engei Gakkai Zasshi, 1972, 41(2): 133-143. DOI:10.2503/jjshs.41.133
[35]  DING J, CHEN B, XIA X, et al. Cytokinin-Induced Parthenocarpic Fruit Development in Tomato Is Partly Dependent on Enhanced Gibberellin and Auxin Biosynthesis[J]. Plos One, 2013, 8(7): e70080. DOI:10.1371/journal.pone.0070080
[36]  DAVID H.LEWIS, BURGE G K, SCHIMERER D M, et al. Cytokinins and Fruit Development in the Kiwifruit (Actinidia Deliciosa).Ⅱ.Effects of Reduced Pollination and CPPU Application[J]. Physiologia Plantarum, 1996, 98(1): 187-195. DOI:10.1111/ppl.1996.98.issue-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133