全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类二阶离散哈密尔顿系统的无穷多解的存在性
The Existence of Infinitely Many Periodic Solutions for a Class of Second-Order Discrete Hamiltonian Systems

DOI: 10.13718/j.cnki.xdzk.2018.02.014

Keywords: 二阶离散哈密尔顿系统, 鞍点定理, 周期解, 次凸
second-order discrete Hamiltonian system
, saddle point theorem, periodic solution, subconvex

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于变分法,运用鞍点定理,得到了一类二阶离散哈密尔顿系统的无穷多解的存在性,推广了已有文献的相关结果.
In the paper, based on the variational method, the existence of infinitely many periodic solutions is obtained for a class of second-order discrete Hamiltonian systems via the saddle point theorem

References

[1]  GUO Z M, YU J S. Periodic and Subharmonic Solutions for Superquadratic Discrete Hamiltonian Systems[J]. Nonlinear Anal, 2003, 55(7-8): 969-983. DOI:10.1016/j.na.2003.07.019
[2]  GUO Z M, YU J S. Existence of Periodic and Subharmonic Solutions for Second-Order Superlinear Difference Equations[J]. Sci China Ser A, 2003, 46(4): 506-515. DOI:10.1007/BF02884022
[3]  ZHOU Z, YU J S, GUO Z M. Periodic Solutions of Higher-Dimensional Discrete Systems[J]. Proc Roy Soc Edinburgh Sect A, 2004, 134(5): 1013-1022. DOI:10.1017/S0308210500003607
[4]  JIANG Q, MA S. A Note on Existence of Infinitely Many Periodic Solutions for Second-Order Nonlinear Difference Systems[J]. Advances in Difference Equations, 2016, 2016(1): 295. DOI:10.1186/s13662-016-1025-x
[5]  BIN H H, YU J S, GUO Z M. Nontrivial Periodic Solutions for Asymptotically Linear Resonant Difference Problem[J]. J Math Anal Appl, 2006, 322(1): 477-488. DOI:10.1016/j.jmaa.2006.01.028
[6]  LI C, AGARWAL R P.TANG C L. Infinitely Many Periodic Solutions for Ordinary p-Laplacian Systems[J]. Adv Nonlinear Anal, 2015, 4(4): 251-261.
[7]  JIANG Q, MA S, HU Z H. Existence of Multiple Periodic Solutions for Second-Order Discrete Hamiltonian Systems with Partially Periodic Potentials[J]. Electronic Journal of Differential Equations, 2016, 2016(307): 1-14.
[8]  XUE Y F, TANG C L. Existence of a Periodic Solution for Subquadratic Second-Order Discrete Hamiltonian Systems[J]. Nonlinear Anal, 2007, 67(7): 2072-2080. DOI:10.1016/j.na.2006.08.038
[9]  LIC, TANGC L, SHENX K. Existence of Periodic Solution for Second-Order Discrete Hamiltonian Systems[J]. 西南大学学报(自然科学版), 2009, 31(6): 116-119.
[10]  YAN S H, WU X P, TANG C L. Multiple Periodic Solutions of Second-Order Discrete Hamiltonian Systems[J]. App Math Comput, 2014, 234(C): 142-149.
[11]  GUO Z M, YU J S. The Existence of Periodic and Subharmonic Solutions of Subquadratic Second-Order Difference Equations[J]. J London Math Soc, 2003, 68(2): 419-430. DOI:10.1112/S0024610703004563
[12]  LONG Y H. Applications of Clark Duality to Periodic Solutions with Minimal Period for Discrete Hamiltonian Systems[J]. J Math Anal Appl, 2008, 342(1): 726-741. DOI:10.1016/j.jmaa.2007.10.075
[13]  CHE C F, XUE X P. Infinitely Many Periodic Solutions for Discrete Second-Order Hamiltonian Systems with Oscillating Potential[J]. Advances in Difference Equations, 2012, 2012(1): 1-9. DOI:10.1186/1687-1847-2012-1
[14]  MAWHIN J, WILLEM M. Critical Point Theory and Hamiltonian Systems[M]. New York: Applied Mathematical Sciences, Springer-Verlag, 1989.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133